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Abstract

The Modular Distributed Manipulator System
(MDMS) is a macroscopic actuator array which can
manipulate objects in the plane. The piecewise-
constant dynamics of manipulation on the MDMS are
developed based on an ezact discrete representation of
the system. The resulting dynamics are inverted en-
abling the calculation of an open-loop vector field which
provides arbitrary uniform object dynamics. The vec-
tor field positions, and under certain assumptions, ori-
ents objects.

1 Introduction

The Modular Distributed Manipulator System
(MDMS) is a macroscopic actuator array which trans-
fers, as well as manipulates, objects in the plane, en-
hancing applications such as flexible manufacturing
and package handling systems. This system has been
described in detail in previous work [4, 6]'. Essen-
tially, the MDMS comprises an fixed array of actuators
(cells) each of which is an orthogonally mounted pair
or roller wheels whose combined motion provides a di-
rectable traction force to an object resting on top. In
this system, several cells support a single object that
can be made to translate and rotate in the plane. Since
sensing and actuation are distributed, each of many
objects can be manipulated independently. (Figure 1).
An 18 cell prototype is currently in operation.

In this paper, we derive the dynamics of motion of
an object on a two-dimensional array of cells. The
macroscopic scale of the system requires us to explic-
itly model the distribution of weight among the dis-
crete set of supports as well as the traction forces.

1The MDMS is formerly the Virtual Vehicle
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Figure 1: The MDMS: Several objects can be trans-
lated and rotated, independently.

Section 2 describes some of the prior work by oth-
ers and relates it to this work and the prior work of
the authors. The dynamic equations derived in Sec-
tion 3 determine the motion of an object given a set
of wheel speeds of each cell. In Section 4, we then
solve the inverse problem: determine the necessary
wheel speeds to effect desired motion. We design an
open-loop wheel velocity field which brings an object
to a particular position by inverting the dynamic equa-
tions. We show that under certain assumptions this
field also brings an object to a particular orientation.
Concluding remarks are made in Section 5.

2 Prior Work

Bohringer, Donald, et. al. [1] applied sensorless
manipulation ideas of Goldberg [2] to an array of mi-
cromechanical actuators which were used to position
an orient very small objects to one of a finite number
of orientations. Kavraki [3] supplied further analy-
sis of microactuated systems using elliptical potential
fields to orient to a single orientation. Due to the
small scale of their applications, both Bohringer and
Kavraki made continuous field assumptions in their

2235



analysis. On the MDMS, however, a smaller number
of cells support an object, requiring explicit discrete
modeling of the system.

In a previous paper by the authors [4] the first step
was taken in examining the dynamics of an object car-
ried by the MDMS, where the one dimensional motion
of the object along the array of cells was considered.
In that paper, the forces between each cell and the
object were calculated, and both a coulomb and a
viscous-like friction law were considered. The result-
ing object dynamics are that of a simple or damped
harmonic oscillator, where the frequency, center of os-
cillation, and damping constant are parameters which
change as the object shifts from one set of supports
to another. This simple oscillator behavior was also
observed in the prototype system. This work was ex-
tended into two dimensions in a more recent paper
by the authors [5]. Translational forces and rotational
torques are calculated as a function of object position.
Similar mass-spring-damper behavior in the plane was
observed.

This paper refines the authors’ previous work in two
dimensions by significantly reducing the amount of
calculation necessary to calculate forces and torques.
A new result presented here is that this refinement
allows for the inversion of the dynamics. A wheel ve-
locity field is thus generated which produces desired
object dynamics with a single equilibrium position re-
gardless of symmetry and cell resolution, and, under
certain assumptions, a single orientation (within sym-
metry) to the resolution of the cells.

3 Dynamics of Manipulation

Initially, we will consider the dynamics of an ar-
ray of cells transporting and rotating an object in the
plane while it rests on a single arbitrary set of cells.
For this, the following assumptions are made:

e Each orthogonally oriented pair of wheels acts as
a single support.

Supports act as springs to support the object.

The bottom of the object is flat.

The speed of each wheel is constant.

Horizontal force between each wheel and the ob-
Jject is due to sliding friction.

o Viscous friction (proportional to speed) exists be-
tween the wheels and object which is also propor-
tional to the normal force.

The computation of the horizontal translation and
rotation dynamics of the object first requires the use of
the equilibrium of the object and constitutive relations
for the supports. The horizontal forces and torques are
computed using a friction law between the object and
wheels. This results in a net force and torque acting
on the object as a function of the object’s position.

Notation: Normal math font represents scalar vari-
ables (e.g. s), arrowed normal math font represents
vectors (e.g. ¥), and bold font represents matrices
(e.g. m). Subscripts z and y indicate z and y com-
ponents, and subscript ¢ indicates the ith cell. For
example, V is a matrix made up of velocity (column)
vectors V; for each cell, with components V, ;and V.
'V can also be said to be made up of component (row)
vectors V, and Vy listing the velocity components for
all the cells.

3.1 Normal Forces

Solving for the n forces supporting the object re-
quires the consideration of the equilibrium of the ob-
ject in both the vertical (z) direction and in rotation
about the z and y axes. Consider n cells arranged ar-
bitrarily in the z-y plane having coordinates as entries
of the matrix below.

x=[§]=[”"“m"]=[Xl.‘.)2,.] (1)

y Y1 ... Yn

An object of weight W, whose center of mass is lo-
cated at Xom = [ Tom Yem | rTesting on n of these
cells, is supported by vertical normal forces N =
[ M ... Ny ]. Vertical equilibrium of the object
requires that

1] NT. (2)

Rotational equilibrium about the z and y axes requires
that the moments induced by the normal forces about
any point (in this case, the arbitrarily located origin of
our coordinate system) sum to the moment about this
point induced by the weight of the object. Therefore,

S Niyi=§ NT = Wycm, and 3)

At this point in the development, there are n un-
knowns (the elements of V), but only three equations
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(2,3, and 4) from equilibrium. To solve for the remain-
ing n — 3 forces, flexibility in the system must be con-
sidered. Each support is assumed to be a spring, with
Hooke’s Law (N; = K;Az;) representing the compres-
sion of the ¢th cell under a normal load. Physically,
this flexibility is either a flexible suspension-under each
wheel or, as in the prototype, flexibility in the surface
of the bottom of the object.

Assuming the bottom of the object is nominally
flat, the flexible cells conform to the bottom of the ob-
ject to distribute the weight. All the supporting cells
lie in this plane, which constrains the normal forces:

N;+az; +by; +c=0 (5)

Equations 2, 3, and 4 along with n instances of
Equation 5 supply n+3 equations and n+3 unknowns
(n N;’s and 3 plane parameters, a, b, and c¢). The
matrix form of this system of equations is

1 . 0 1 Iy n i N1 ] [ 0 )
0. 1|1z, yn N, | = 0
1 .1100 O c w
Zy ...2, {0 0 O b Wz,
L Y1 yn |0 0 O 4L a R Wyc |
o ~ N —  —————
A NT w

abe

) ©)

A can be inverted to solve for Ngp. (which contains
N and a, b, and ¢.) Define a matrix B.

[ 1 ... 1
B=|z1 ... z, (N
[/} Yn

such that the expression for the matrix A is

A= )

[(Inxn | BT
B | 03xs3 |

L

The inverse of the matrix A exists if B has rank 3
(which is true as long as all the cells do not lie on a
line). The expression for the inverse is

—1_|Inxn - BT (BBT) ' B|BT (BBT) !
S i o B

Multiplying A by A~! verifies the result.

Since W only multiplies nonzero elements into the
right side of A~!, and only the slopes (a, b, and c)
result from the lower portion of A~!, the calculation

Figure 2: Interaction between wheel and object.

of N uses only the upper right partition of A~1.

Xcm) (10)

The full planar dynamics involve translation and ro-
tation of the object. The horizontal forces are derived
from the normal forces through the use of a viscous-
type friction law (see Figure 2). The horizontal force
from each cell f; is proportional to a coefficient of
friction u, that cell’s normal force N;, and the vec-
tor difference between the velocity of the wheel and
the velocity of the object at the point of the cell. This
velocity difference is a function of both the transla-

w
NT =BT (BBT) ™’ l Wyem ]
Wyem

=wBT (BBT) ™ ([ (1) ]+[
0

3.2 Planar Dynamics

00
10
01

tional velocity of the object X cm, the velocity of the
wheel Vj, the rotation speed of the object about its
center of mass w, and the position difference between
the cell and the center of mass X} - ).fcm.

ﬁ =pn (‘71 _fcm‘l‘w [_(1) 3](}?1:—5(’0"1))1\71 (11)

The horizontal force from each cell is summed up
over all the cells. Define a wheel velocity matrix V as

Vi, Vo, ... WV

= = 0. 12
v [Vlv V2v V"v] ( )

Summing vectorially, the net horizontal force is

F=uv NT - uX . (13)

Observe that the net horizontal force is not a func-
tion of the object’s rotation speed - the terms multi-
plying w are identically zero[6]. Furthermore, the sec-
ond term in this equation is a dissipative linear damp-
ing term. The substitution of N from Equation 10

2237



into Equation 13 yields

00
F=pwwvBTBBT) ' |1 0| Xem
01
S
1 1 =
+uWVBT (BBT) " | 0 | —puX W (14)
0

~

\

v~

fo

where kg is a constant 2 x 2 matrix and f; is a constant
2 x 1 vector. The matrix k, is essentially a matrix
of spring constants, since it specifies force as a linear
function of position. The vector f» is an offset force.

In two dimensions, the torque each cell applies to
the object is the scalar cross product of the position
vector of the point of application of the force, )fi, rel-
ative to the object center of mass, X¢n, and the hor-
izontal force vector from that point, f;. After some
algebra[6] the total torque on the object is

T= pﬁﬁ—ufcmeN—wu (fN—WX;PmX'cm) (15)

where R; = X;xV; defines K and X; = XTX; defines
X.

The term multiplying w is always positive and
hence is dissipative. Substituting N from Equa-
tion (10) gives an expression for the moments acting
on the object as a function of position and rotational
speed.

1
T = uWEBT (BBT) " |0
0
- -1 00 —
+pWEBT (BBT) " |10| Xem
01

e

ks

Rt (ke Ron) e EHWRD )10

where ks and f:, are the spring and offset constants
from the translational dynamics, I_c's, is a 1x2 constant
vector relating torque to position, and 7, is a scalar
constant torque. Note that nothing in the previous
mathematics involved the orientation of the object,
and hence, while the object rests on a particular set
of supports, torque on the object is not a function of
orientation. This is very important for determining
stable orientations.

4 Design of Velocity Fields

A set of 9 constants quantifies the mass-spring-
damper dynamics of the object as it rests on a sin-
gle set of supports. A typical problem is to create a
velocity field (described by X and V) to produce mass-
spring-damper behavior with uniform desired proper-
ties over the entire array. In particular, we specify
an equilibrium position and return spring stiffnesses,
and ensure rotational equilibrium at the translational
equilibrium. The analysis relies on the following as-
sumptions:

e The coordinate origin is at the desired equilib-
rium.

e The cells are arranged with mirror-symmetry
around the coordinate axes.

e The object also has mirror symmetry.

¢ When the object rotates counterclockwise, more
cells under the object lie in the first and third
quadrants than in the second and fourth. More
specifically, 3~ z;y; > 0.

4.1 Translational Constants

Equation (14), specifies the translational dynamics
of the object using 6 constants: 4 spring constants in
ks and two constant offset forces in f,. We consider
only the case where k, is a diagonal matrix, decou-
pling z and y motions of the object. The diagonal
terms in kg tend to pull the object towards a central
equilibrium. The off-diagonal terms act as circulatory
terms, moving the object around the equilibrium, and
are not helpful for positioning the object. Eliminating
the off-diagonal terms simplifies the design problem
and improves the rotational properties of the field.

When the equilibrium position, X.m,,, and return
spring strengths, ks,, and k ,, are specified, the ob-
ject will move to the equilibrium position with the
dynamics of the mass-spring-damper system shown in
Figure 3. At equilibrium, f, = —ksX.m., so, in effect,
f_:, is specified. The design problem then becomes the
problem of determining wheel velocities V given their
positions (specified in X and equivalently in B) and
the constants ks and f,. Section 3 defined the func-
tional relationship from V to kg and f,. This section
describes a method to derive a suitable velocity matrix
V from ks and f,. .

Equation 14 defines the constants ks and f, as

Szz

[ ;‘72 231’2 I;;s“’ ] = IJWVBT (BBT)——l . (17)
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Figure 3: With ks,, = ks,, = 0 the object behaves
like a mass-spring damper system.

We rewrite this equation in terms of the vector (of
length 2n) formed by stacking the transposes of the
two rows of V (V.T and Vf ). Taking advantage of the
symmetry of BBT, the following relation holds.

fo.

k3zz 1 I

ks (BBT)"'B| o vr

| =uW | |=&| (8
£o" g 0 [(BBT)'B||VT (18)
ko, s

This produces a set of 6 equations and 2n unknowns.

Solve for the wheel speeds (V, and 17,,) requires the
inversion of the previous set of equations. This set of
equations is underconstrained, so some freedom in the
solution exists and further constraints are required.
The Penrose pseudo-inverse accomplishes this by min-
imizing the sum of the squares of the wheel speeds.
After applying properties of matrix transposes and in-
verses the pseudo-inverse, B, is

P o

Therefore, we can solve for the set of wheel speeds
which will give an object the desired dynamics ex-
pressed by the desired equilibrium and spring con-
stants (with k,,, = k,,, = 0 to decouple the z and
y motions of the object).

=BT (BBT)”

foz
ks...
VIl _ 1 [BT] o 0
[_”—VJ]‘TW[ ot || @
0
ksw

Since each row of BT is the vector [1z; y;], each
cell’s wheel speeds are computed independently. In
the diagonal ks case, f,, = ~Zcm ks,,, and f,, =
~Yem. Ks,, , SO the wheel speeds are

Voo =
Vi =

ks.. (i — Tem,), and (21)
ksvv (yi - ycme) ) (22)

which is a field where the cells point towards the equi-
librium (for negative k,,, and k;, ), with velocities of
each component proportional to the perpendicular dis-
tance to the corresponding axis (see Figure 3). Note
that this is a discretized version of the continuous el-
liptic field described by Kavraki [3].

4.2 Rotational Constants

Section 3 showed that for an an object resting on a
single set of supports, the torque is not a function of
orientation. Therefore, it is not possible to construct
a static velocity field which will orient an object more
precisely than its range of motion which keeps it on a
single set of supports. The black rectangle in Figure 4
demonstrates this free range of motion.

Locally, we can only assure that the object will be in
rotational equilibrium when it is in translational equi-
librium. Objects are oriented as they change support
from one cell to the next. There are then three con-
siderations for the object’s orientation: (i) Torque is
zero when translational force is zero (at Xom = _.cme).
(#4) When the object rotates about its equilibrium po-
sition, a change in supports induces a restoring torque.
(i2) Given any starting position and equilibrium, the
object will eventually reach the desired position and
orientation. These considerations will be examined
under the field derived in Section 4.1.

Without loss of generality, the origin of the coordi-
nate system is placed at the desired equilibrium po-
sition. Therefore, when the object rotates about its
translational equilibrium, Xcm = 0 and fo = 0, and
Equation 16 reduces to

T =7y —wpuXN (23)

which is a constant applied torque with linear damp-
ing. We must then have 7, = 0 for the object to be
in complete translational and rotational equilibrium.
The expression for 7, from Equation 16 is

7o = uW [100] (BBT) ' BRT. (24)

The vector RT can be expressed in terms of the stacked
velocity vector. Furthermore, given f, = 0 (due to the

2239



choice of coordinate system) and ke is diagonal (by
design), the constant-torque-term is

7, = pW [100] (BBT) ' B-
—m 2 ks
—Yn Tn 0

The rows of B are the ones vector, the vector of z
positions, and the vector of y positions. Therefore, the
terms produced by multiplying B with other vectors
and matrices form sums of the z and y components of
all the cell locations. For example,

n S Yy
BBT=| Yz S22 Tma |- (26)
Yy Lmiyi vl

In terms of these sums, Equation 25 becomes
=uW (10 0] .

nooY T Y
Yor Y Ymyi| |2 zilyi|(ks,,—
Yy iy yoyl | | miysd

In general, the torque resulting from these con-
stants evaluated at the equilibrium position is not
zero. However, consider the case where the cells on
which an object rests are arranged symmetrically (mir-
rored in z and y) about the coordinate axes. There-
fore, any term with odd powers of z; or y; in a summa-
tion will be identically zero. For example, in Y z;y;,
cells in the first and fourth quadrants cancel cells in
the second and third quadrants, making 3 z;y;=0.
Similarly, 3" z;?y;=0 and Y z;4;2=0. Therefore, the
constant torque 7, becomes identically zero such that
the object will be in rotational equilibrium when rest-
ing on a mirror-symmetric set of supports at the trans-
lational equilibrium.

The symmetric arrangement of cells under the ob-
ject depends on the object’s shape and orientation.
Figure 4 shows a rectangular object in three orienta-
tions at its equilibrium position with arrows at each
cell indicating the magnitudes of the velocities at each
cell. In this figure, we can see that both the symmetri-
cally oriented object (solid black line) and the slightly
perturbed object (dashed black line) have a symmet-
ric set of forces, so do not feel a torque. However, the
object which has rotated enough to change supports
(dotted black line) has a set of supports which is sym-
metric about the origin (radially symmetric) rather

! Z TiYi
ke, )(27)

$

-

SR

Figure 4: Rotation of two objects (black and grey)
about their equilibrium positions. Black dashed lines
represent the free (unorientable) range of motion of
the black object. The grey object does not satisfy the
“positive rotation” property. Note that k <0
and (ks,, — ks,.) < 0.

32z ’vv

than about the coordinate axes and will feel a torque.

Equation 27 shows that for a given arrangement of
cells and a particular orientation of object, the direc-
tion of torque depends on the difference ks, ~ k., .
Therefore, these constants determine the stability of
rotational equilibrium. If ks, =k, , there will be no
torque when the object rotates enough to shift cells.

If the object is mirror-symmetric itself, a stronger
statement can be made about the direction of rotation.
The resulting set of supports will be radially symmet-
ric at any object orientation such that for every cell
(xs,9s) there is a cell (—z;, —y;). Thus, many of the
terms in Equation 27 become zero.

7o = uW [100]

Zzzyz
0 2111 Exly,
0 Y ziyi > yi®

= —Zzzy: svy ~ Ksea) - (28)

A final assumption can be made that when the
symmetric object rotates counterclockwise about the
equilibrium position, Y z;y; > 0. This is often true,
since more of the object is in the first and third quad-
rants, and more first and third quadrant cells (giving
z;y; > 0) are covered. The black rectangle in Fig-
ure 4 shows an object with this property. However,
because of the discreteness of the array, some objects
(for example, the grey rectangle in Figure 4) may have
anegative ) ;y; for some counterclockwise rotations.
A particular object can be checked for “orientability”

3yv~k3u)

2240



on the array by analyzing it as it rotates about equi-
librium and to see which cells it covers. For objects
with this “positive rotation” property, there will be a
restoring torque for (k,,, — ks.,) < 0 with a stable
orientation.

Nothing has been said so far for torques on the ob-
ject when its position is not at the equilibrium. To
assure proper orientation, the object must first reach
its equilibrium and then orient itself. Reaching the
equilibrium is guaranteed regardless of orientation and
cell distribution since the object’s dynamics are that
of a mass-spring-damper centered at the origin. Once
translational equilibrium is reached, support changes
due to rotation do not affect the translational dynam-
ics.

Once position equilibrium is reached, a torque will
be applied which tends to orient the object. For
(ks” - ks") < 0, a symmetric object satisfying the
positive rotation property will rotate until it is aligned
with the coordinate axes.

5 Conclusions

In this paper, a standard wheel velocity field was
methodically designed to provide uniform, arbitrary
spring constants and equilibrium position over the en-
tire array regardless of which cells support the object.
The resulting field, when only the non-circulatory
spring constants are used, is an inward-pointing field
with each wheel’s velocity proportional to its the cor-
responding component of perpendicular distance to
the equilibrium position.

This field was then analyzed for its rotational equi-
librium properties. Interestingly, the torque on the
object is not a function of the orientation because the
supporting forces only depend on the position of the
center of mass. Therefore, transitions from cell to cell
as the object rotates about its equilibrium orient the
object within the resolution limits of the discrete ar-
ray. Given the assumption that the set of cells sup-
porting the object at equilibrium is mirror-symmetric
about the coordinate axes, it was found that a rota-
tional equilibrium exists when the object is at transla-
tional equilibrium. A ramification of this assumption
on a regular square-lattice array, such as the MDMS,
is that the equilibrium position must be set either ex-
actly on a cell or exactly midway between cells. Also,
an object can be oriented only to angles of ZF, for
n=0,...,3.

The torque developed by the inward-pointing field
was analyzed as the object rotates about equilibrium.

It was determined that, as long as the two spring con-
stants are not equal, when the object rotates and the
supports change, there will be a restoring torque on a
symmetric object with the property that > z;y; > 0
for all the cells under the object when the object ro-
tates counterclockwise. This positive rotation prop-

" erty is an artifact of the discrete array and holds for

many object sizes and shapes. Furthermore, in the
the limit of many cells spaced closely together (e.g., a
continuous array), this property always holds for sym-
metric objects, as implied by Kavraki. The discrete
case requires a simple analysis to check if an object
meets this assumption.
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