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Abstract

An actuator array performs distributed manipulation
where an object being transported and manipulated
rests on a large number of stationary supporting ac-
tuators. The authors have developed a macroscopic
actuator array consisting of many motorized wheels.
As opposed to a MEMS array, the analysis requires
the explicit modeling of the discreteness in the system,
including the set of supports, distribution of weight,
and generation of traction forces. Using an open-loop
wheel velocity field, discreteness causes undesirable be-
havior such as unstable rotational equilibria, suggest-
ing the use of object feedback. Discrete distributed con-
trol algorithms are derived by inverting the dynamics
of manipulation. These algorithms reduce the many-
input-three-output control problem to a three-input-
three-output control problem.

1 Introduction

An actuator array performs distributed manipulation
where many small stationary elements (which we call
cells) cooperate to manipulate larger objects. Current
applications of actuator arrays range from microme-
chanical systems transporting pieces of silicon wafer
to macroscopic arrays of motorized wheels transport-
ing cardboard boxes. In such applications, an object
lies on a regular array as it is transported and oriented.
Many cells support the object simultaneously, and as
it moves, the set of supporting cells changes. While
supporting the object, each cell is capable of providing
a traction force on it, and the combined action of all
the cells supporting the object determines the motion
of the object.

Actuator arrays represent a recent development in
robotic manipulation. Typical work in actuator arrays
addresses the task of bringing an object to a particular
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position and orientation on the array. Generally, open-
loop (passive) modes of operation are used, where the
action of the cells is pre-programmed and constant,
and a “force field” is established in which the object
moves [1, 2]. These analyses were intended for micro-
electromechanical (MEMS) scale applications, where
the large number of actuators justifies the use of the
assumption that the forces from the discrete actuators
are approximated by a continuous force field applied
over the area of the object. Under this assumption,
researchers used potential field theory to predict mo-
tions and stable poses of objects.

In this work, we examine a. macroscopic actuator
array, the Modular Distributed Manipulator System
(MDMS). Each cell of the MDMS is made up of a
pair of motorized roller wheels which together can ap-
ply a directable traction force to objects such as card-
board boxes. The MDMS uses distributed control and
therefore is fully programmable. An 18 cell prototype
MDMS has been built and tested. On the MDMS, as
few as four or six cells support an object such that
continuous approximations fail and we must account
for discreteness when analyzing the MDMS.

Discreteness causes imprecision in open-loop manipu-
lation, particularly in the orientation of objects. For
example, under certain modeling assumptions appro-
priate to the MDMS, the net moment acting on an ob-
ject is not a direct function of the object’s orientation,
and orientation can only be done to cell resolution [6].
In addition, some objects which have stable rotational
equilibria on a continuous array have unstable rota-
tional equilibria on a discrete array [5]. Therefore,
closed-loop object control is necessary to precisely ori-
ent objects. In a closed-loop (active) mode of opera-
tion, information about the object’s motion is used to
update the action of the cells. Such information may
be obtained from local sensing at each cell or from
some global sensor, such as a vision system. Other
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work has been done in closed-loop distributed manip-
ulation [7] using vibrating plates to generate continu-
ous force fields acting on small (point) objects rather
than pointwise forces acting on large objects.

In this paper, we derive closed-loop manipulation
strategies for positioning and orienting objects on the
MDMS. The dynamics of manipulation on the MDMS
are summarized in Section 2 paying particular atten-
tion to discreteness. In Section 3, we derive closed-
loop policies by inverting the dynamics. Section 4 con-
tains simulations of closed-loop manipulation. Con-
cluding remarks are made in Section 5.

2 Dynamics of Manipulation

We will consider the dynamics of an array of cells
transporting and rotating an object in the plane while
it rests on a single arbitrary set of cells. To compute
the traction forces on the object from each wheel, we
first compute the supporting (normal) forces and then
apply a viscous-type friction law:

Consider an object of weight W, whose center of mass
is located at Xom = [ Tem  Yom ]T resting on n cells

located at the positions contained in the following ma-
trix.

1 ...1
B=|z...2, (1)
Y1 .--Yn

The object is supported by vertical normal forces
N=[M N, ] whose determination requires
consideration of equilibrium of the object in both the
vertical (z) direction and in rotation about the z and y
axes. Equilibrium provides three equations, and since
we have n supports, the system is statically indetermi-
nant, and we must consider flexibility in the system.

We assume each support is a linear spring. Physically,
this flexibility is either a flexible suspension under each
wheel as shown in Figure 1 or, as in the prototype, flex-
ibility in the surface of the bottom of the object. We
assume the bottom of the object is flat such that the
spring deflections (and hence the normal forces) dis-
tribute linearly under the object. The 3 equilibrium
equations combined with n instances of this compat-
ibility constraint form a set of n + 3 equations and
n + 3 unknowns from which we can solve for N as a
function of object position [6].
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Figure 1: Flexible supports act as springs to distribute
the load.
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Figure 2: Interaction between wheel and object.

The horizontal forces on the object are derived from
the normal forces through the use of a viscous-type
friction law (see Figure 2). The horizontal force from
each cell f_': is proportional to a coefficient of friction p,
that cell’s normal force IV;, and the vector difference
between the velocity of the wheel and the velocity of
the object at the point of the cell.

fi=u (17,- ~ Kom +w [_‘; (1)] (% —)?cm))zv,- 3)

where w is the rotation speed of the object. This trac-
tion force from each cell is summed over all the cells.
Define a wheel velocity matrix V as

177 O L 2V 729 [T O

Summing vectorially, the net horizontal force is
F=uV NT - pX W (5)

Observe that the net horizontal force is not a function
of the object’s rotation speed - the terms multiplying w
are identically zero [6]. Furthermore, the second term
in this equation is a constant linear damping term.
Substituting N from Equation 2 yields
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The 2 x 2 spring constant matrix ks, and the offset
force vector f, are constant while the object rests on
a particular set of supports.

We can compute the net torque on the object simi-
larly [6], resulting in the following expression for the
net moment acting on the object as a function of po-
sition and rotational speed (and set of supports).
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where R; = X;xV; and X; = X‘:r)'(" = (= + y?). The
vector E,, relates torque to position, and 7, is a scalar
constant torque. The net applied torque and damp-
ing are both effectively position dependent. The term
multiplying w is always negative, and hence dissipative
(although not constant). Note that while an object
rests on a particular set of supports, torque on the ob-
ject is not a function of orientation. This is important
for determining stable orientations.

3 Position and Orientation
Feedback

Our strategy to implement position and orientation
feedback is to apply velocity fields which reduce the
array to a single “virtual” actuator capable of gener-
ating a desired force and torque on the object. Since
force and torque change as the object moves, we must
continuously recompute and adjust the wheel speeds.
We assume sensing of the object’s position and ori-
entation is done externally, for example, by a vision
system. It is desirable to distribute the computation
to reduce communication such that each cell need only
be aware of the desired net force and torque and its
location relative to the center of the object.

3.1 Applying both Force and Torque

We compute velocity fields by inverting the relation-
ship between wheel speeds and net force and torque.

As a first attempt, we specify both a force and torque
to compute the velocity field. Without loss of general-
ity, we set the origin of the system to lie at the center
of the object such that the cells move rather than the
object. Also, we ignore the damping terms in Equa-
tions 6 and 7. For the purpose of feedback control, we
treat the damping as a property of the controlled sys-
tem rather than the actuator since the damping forces
are functions of the objects motion and not the wheel
speeds. The expressions for the action of our virtual
actuator (i.e. the net force and torque on the object)
reduce to:
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We can rewrite these equations in terms of the stacked
velocity vector formed by stacking the transposes of
the z and y component rows of V.
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where Dy and Dy are diagonal matrices containing
the z and y components of the cell positions. We
pseudo-invert this underconstrained set of equations
to solve for the stacked velocity vector.

V’T 1 - - fou
| = —=Q" Q") | £, (10)
VyT NW ( ) ™

Unfortunately, it is not possible to algebraically reduce

QT (QQT) ~! to a more useful form. Each cell’s wheel
speeds depend on the positions of all cells currently
supporting the object. Therefore, while a field com-
puted in such a manner will provide the desired force
and torque, its computation cannot be distributed,
and a centralized controller must give speed com-
mands to each cell. This is not practical for a large
system because of bandwidth limitations.

3.2 Superposition of Fields

Because traction force from each cell varies linearly
with wheel speeds, net forces and torque add with the
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Figure 3: Uniform field which applies an arbitrary net .

force on an object with no net torque.

- superposition of velocity fields. Therefore, we adopt

the strategy of superimposing two fields: a field to
apply a force without a torque and a field to apply
a torque without a force, where each field operates
under distributed control.
To compute a field to apply a force with no torque, we
invert the relationship between wheel speeds and net
force. By using the Penrose pseudo-inverse, we obtain
the velocity field which provides the desired net force
with the minimum sum of squares of wheel speeds.
This minimizes extraneous motions, and hopefully
(with no guarantee) the resulting field will generate
no net torque.

. The expression for the net force in terms of the stacked

velocity vector is

R o L

Vy
We pseudo-invert this underconstrained set of equa-
tions to solve for the stacked velocity vector.

| a»

Figure 3 shows the resulting uniform field. Our
methodology ensures that the net force is indepen-
dent of the set of supports such that we can apply the
same net force without knowing which cells the object
rests on. The velocities of the cells are decoupled, and
are only functions of the net force to be applied. This
field easily operates under distributed control, where a
centralized controller need only broadcast the desired
net force to all the cells.

This uniform field can be shown to apply no torque.
While it may seem intuitive that this be true, it is not
trivial. If we specified force from each cell rather than
wheel velocities, there would be a net torque when the
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Figure 4: Computed rotational field which applies an
arbitrary net torque on an object.

center of mass of the object and the centroid of the
supporting cells did not coincide. Since the traction
force from each cell depends on the supporting force,
however, the distribution of weight ensures that all
moments balance. The algebraic proof is omitted.

The same methodology used to compute a field to ap-
ply an arbitrary force applies to the application of an
arbitrary torque. The expression for the net torque in
terms of the stacked velocity vector is

T\—1 VT
7o = uW [1 0 0(BBT) B[—DyIDx][ﬁ] (13)

v
Once again, we pseudo-invert this underconstrained
set of equations to solve for the stacked velocity vector.

- ) o

This expression can be algebraically reduced since Dy
and Dy are diagonal matrices. After some algebra,
the wheel velocities decouple and the velocity of each
wheel becomes

1 —Yi
Ve, = = —5—=T
BT uW a2’ (15)
1 Ty
Vyi =

—_— T
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Figure 4 shows the resulting computed rotational field.
The vector formed by each cell’s two wheel speeds ‘is
perpendicular to its position relative to the center of
the object with a magnitude inversely proportional to
distance. -‘Again, our methodology ensures that the
net torque is independent of the set of supports. This
field also operates under distributed control, where a
centralized controller need only broadcast the desired
torque and current object location to all the cells.

This rotational field, however, has two problems.
First, since the wheels speeds are inversely propor-
tional to their distance from the object center, some
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wheel speed commands may become arbitrarily large,
and the wheel speeds will saturate. In practice, only
one cell will be close enough to the object center to
saturate, and its contribution will be limited.

The second problem is that a net force is applied
by the rotational field. We obtain the expression for
the net force by substituting Equations 15 into Equa-
tion 11. Considering the z component of Equation 11
(the y component is handled similarly), the expression
for the net force is

—
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This expression, in general is not equal to zero and
generates an extra force which was not intended by
this field. This disturbance force (f4) is dependent on
the application of torque. While it can be shown that
there are many positions and orientations at which
this disturbance force vanishes [4] and its effect may
be small, we desire an alternate method for generating
a torque without generating a disturbance force.

3.3 Known Torque Direction Method

To derive a field to generate a torque with no force,
we exploit the distribution of weight among the cells
to compute wheel velocities in such a way that no net
force is applied. Rotational equilibrium of the object
about the z and y axes ensures that the normal forces
are distributed such that

Ny

O:[ml :cn} : (17)
Yi - Yn .
N,

We can represent the net force on the object as

% v 1| ™
Feuly ] o

These two equations are of the same form with the
position matrix replaced by the velocity matrix. If we
set the wheel velocity matrix to match the position
matrix, the net force will be zero. In addition, we can
- swap the two rows of the velocity matrix and negate

Figure 5: A kinematic rotational field applies a torque
of known direction to the object without applying a
net force.

the top row while maintaining zero force to generate
the following velocity field.

Vi, = -—ay;
Vi = az (19)
where a is a constant with which we can scale the field.
We refer to this as a kinematic rotational field since
the wheel speeds vary linearly with position as they
do in rigid body rotation as shown in Figure 5. This
field is decoupled and can operate under distributed
control. The net torque applied by this field is

n=Y =Y N +ad) (@)

This torque is not constant; it changes with both ob-
ject position and set of supports. However, because
each cell contributes positively to the summation of
torques, the direction of the torque is known. There-
fore, we eliminate the disturbance force generated by
the computed rotational field at the expense of un-
certainty in the applied torque magnitude. This field
is still useful for feedback by scaling o proportionally
with the desired torque.

4 Implementation of Feedback

We now implement position and orientation feedback
using the uniform field for force actuation and both
the computed rotational field and the kinematic ro-
tational field for torque actuation. Both the position
and orientation loops use proportional control. Fig-
ure 6 shows the structure of the feedback system under
the computed rotational field. The linear translational
damping and position dependent rotational damping
are lumped into the object dynamics. The transla-
tional and rotational components of the MDMS are
separated to show the effect of the disturbance force

3670



¢ QObject
Translation
Dynamics

(1]

Object
Rotation
Set of Dynamics
Supports

Figure 6: Structure of feedback control system under
the computed rotational field. Blocks labeled MDMS
represent the effect of the uniform field (top) and a ro-
tational field (bottom). The object dynamics blocks
are mass-damper systems. Position feedback loop is
coupled to orientation feedback loop by the distur-
bance force generated by the application of a torque.
Only the disturbance force is affected by the set of
supports.

generated by the computed rotational field. The feed-
back structure under the kinematic rotational field is
identical, but without the disturbance force.

Asymptotic stability of this feedback system under
both types of rotational fields is guaranteed [3]. We
have omitted the mathematical proof which employs
the circle criterion and bounds on nonlinear damping
and disturbance terms. Asymptotic stability of the
closed-loop system can be explained intuitively as fol-
lows. Except for the position dependent damping, the
orientation loop is independent of the position loop.
The orientation loop is necessarily asymptotically sta-
ble because the nonlinear damping dissipates energy
and no rotational energy is added by the rest of the
loop. In the case of the kinematic rotational field,
the torque gain varies, but is bounded. For constant
(or zero) reference input, the object will eventually
reach the desired orientation with no steady state er-
ror because of the free integrator in the mass-damper
plant. When this occurs, the torque command, and
therefore the disturbance force, will vanish. The posi-
tion loop then operates independently and as a pair of
time-invariant linear mass-damper systems under pro-
portional control, and will be asymptotically stable.

Evaluation of the closed-loop performance requires
that the nonlinear rotational damping and the distur-
bance force (or the nonlinear application of torque)
be bounded. Any bound on these terms can be used
to guarantee stability, and while it is easy to come
up with some bounds on these terms, it is difficult
‘to come up with bounds to make useful performance
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Figure 7: Simulation of the closed-loop system under
the computed rotational field. The object is shown as
the moving rectangle, with a curve tracing the motion
of it’s center. Each cell is marked with an "X’.

guarantees. The computation of useful bounds and
their application to performance is the subject of fu-
ture work.

Figure 7 shows a simulation of the closed-loop sys-
tem under the computed rotational field. The object
reaches equilibrium exactly at both the desired posi-
tion and orientation. Since this is approximately a
set of mass-damper systems, by adjusting the gains,
we can adjust the overshoot and settling time of each
component of the closed-loop response. The curvature
of the path of the center of the object (which otherwise
would have been straight) demonstrates the effect of
the disturbance force. Figure 8 shows a simulation of
the closed-loop system under the kinematic rotational
field. In this case, the object moves in a straight line
to the equilibrium position, and the rotational motion
is greatly unaffected by the torque uncertainty.

5 Conclusions

In this paper we have derived closed-loop control poli-
cies for manipulating objects. While more compli-
cated to implement than open-loop policies, these
strategies address precision limitations apparent in the
open-loop operation of discrete actuator arrays. We
derived a class of fields which reduce the array of actu-
ators to a single virtual actuator for which simple feed-
back methods apply. Because of the design methodol-
ogy used, these fields eliminate the dependence of the
dynamics on the set of supports. Because of the use



Figure 8: Simulation of the closed-loop system under
the kinematic rotational field.

of distributed control, limitations are present in these
strategies in the form of coupling from torque to force,
or in the form of torque uncertainty which do not af-
fect stability or precision of equilibria, but may affect
closed-loop performance.

Our future efforts will be toward performance guar-
antees for closed-loop manipulation using distributed
control. These feedback methods will be extended
to include not only manipulation to a single position
and orientation, but also path and trajectory following
with multiple objects simultaneously.
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