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Sensor-Based Construction of a Retract-Like
Structure for a Planar Rod Robot

Howie ChosetMember, IEEEand Ji Yeong Lee

Abstract—Sensor-based planning for rod-shaped robots is space that is connected within each connected component of
necessary for the realist@c deployment of nonc_ircularly symmetr_ic the free space [1], [2]. All algorithms that use a roadmap as-
:gggg mhtgvuenkth%VYgirirxrsci)gr:g?ntEsQXl\{gee;iascglr?igjrrzizﬁm;nplztggs sume that there exists a path between any point in the free space
planar rod robots posses three degrees-of-freedom, two for posi‘- to the roadmap. A planner uses the roadmap by finding a path
tion and one for orientation, and hence have a three-dimensional from both the start and the goal to the roadmap and then be-
configuration space, SE(2). In this work, we define the rod tween their respective “accessed” points on the roadmap. If the
hierarchical generalized Voronoi graph (rod-HGVG) which is a  startand goal lie in the same connected component of free space,
roadmap of the rod’s configuration space. Prior work in Voronoi-  then their respective accessed points lie on the same connected

based roadm.aps use a retraction of the robot’s f’ree space to d_efine roadmap component. This is how roadmaps “capture the con-
the roadmap; here, we break a part the robot's free space into A
nectivity” of the free space [3].

regions where fragments of the roadmap are defined and then ) . i
connect the fragments. The primary advantage of the rod-HGVG ~ Motivated by Rimon and Canny’s work [4], we use a sensor-
is that it is defined in terms of workspace distance measurements, based definition of a roadmap. A roadmap is a one-dimensional

which makes it amenable to sensor-based planning. This paper network of curves that have the following important properties:
25556'?f;‘é‘ifgnl”‘dgﬁg%ar!lprﬁ]‘;ggm“;?iéhna:ﬁaeﬂgr\;avtitekﬁrt]hl?n':g}':%\‘? accessibility connectivityand departability These properties
of the rod robot. It is W())/rth noting that this procedure does imply that the planner can determine a path between any two
not require an explicit definition of configuration space, i.e., POINtS in a connected component of the robot's free space by
this procedure constructs a roadmap of rod configuration space first finding a path onto the roadmap (accessibility), traversing
without ever constructing the configuration space itself. the roadmap to the vicinity of the goal (connectivity) and then
Index Terms—Generalized Voronoi graph, retractions, rod- constructing a path from the roadmap to the goal (departability).
shaped robots, sensor-based motion planning, Voronoi diagrams. When full knowledge of the world is available, then departa-
bility can be viewed as accessibility, but in reverse. However, if
a priori knowledge is not available, the planner must determine
on-line when to depart the roadmap, as opposed to determining
ENSOR-BASED planning makes use of sensor informarpath from the goal to the roadmap. If the planner can construct
ion reflecting, at best, line-of-sight information of the enthe roadmap using line-of-sight sensor information, then it has
vironment, in contrast to classical planning, which assumes fifdl essence explored the free space because the planner can use
knowledge of the environment prior to planning. This paper dehe roadmap to plan future excursions through the free space.
velops an exploration technique for rod-shaped robots whichThis paper defines a new roadmap for rod-shaped robots
posses a three-dimensional (3-D) configuration sp#€2). whose configuration space #F(2) and prescribes the incre-
Conventional planners first construct the robot’s configuratiafiental construction procedures to construct the roadmap, i.e.,
space and then perform planning in the configuration spaegplore an unknowi$ F(2) configuration space. Since explo-
However, for sensor-based planning, this is not possible kgtion is more general than navigation, we will focus discussion
cause the environment is not knoampriori and hence the con- on exploration in this paper. This new roadmap, termed rod
figuration space for the rod cannot be constructed. Hence, Hierarchical generalized Voronoi graph (rod-HGVG), is defined
robot must construct a representation of the configuration spageterms of distance to workspace obstacles. This feature is
without explicitly constructing the configuration space itself. important for sensor-based planning because we can use real
This paper presents a method to incrementally construck@nsory data to construct the rod-HGVG. In Section I, we
geometric structure, termed@admap that captures the salientdemonstrate how to lift workspace distance into configuration
geometric features of the rod’s configuration space. Canny orighace through the forward kinematic map. Computing the
inally defined a roadmap as a one-dimensional subset of the fegadient (really the differential) of the distance in configuration
space is nontrivial because we need to factor in orientation
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in the rod-hierarchical generalized Voronoi graph (rod-HGVG)
which is proven to be a roadmap 6fE(2) in Section VII.

The major challenge here is to demonstrate connectivity of the
roadmap inits configuration space. We demonstrate connectivity
by dividing the free space into cells called junction regions where
the rod-GVG edges serve as retracts of the junction regions and
then we use the point-GVG to connect the retracts (i.e., the
rod-GVG edges) of adjacent junction regions.

Finally, using numerical methods similar to those presented
in [6], we present an incremental construction technique for
the rod-HGVG. Essentially, these numerical continuation tech-
niques trace the roots of an equation comprising workspace
distance functions and thus this procedure only requires dis-
tance information that sensors provide. Once the rod-HGVG
is constructed, then the rod robot has essentially exploredfig 1. Solid line segments correspond to the set of points equidistant to two
configuration space because it can use the rod-HGVG for futfigtacles. i-e., the point-GVD.
excursions into the configuration space. This paper presents

one of the first formulations of an algorithm that explores aghere Vd;(r) is a unit vector based at the closest point to

non-Euclidean configuration space. C; and pointing away frone along a line defined by andr.
In constructing the point-GVD, we are interested in a subset of
[l. RELATION TO PRIOR WORK 88, termed the two-equidistant faaghich is defined as

Sensor-based planning hasreceived increased attention, asitis
a requirement for realistic deployment of autonomous robots in
unstructured environments. For a review of many sensor-based ) ) ) )
planningtechniques, see [7]. Unfortunately, currentsensor-bas@i_an environment withn obstacles, the point-GVD is
planning methods are limited because: (1) many are based@a1 Uj=i1 %ij- See Fig. 1.
heuristic algorithms and itis therefore impossible to prove if they O’Dunlaing and Yap show that the point-GVD isretract
will work in all possible environments; (2) proof of convergencef the robot’s free space. Recall that the retract is aiset X
for other algorithms is limited to the case of a point in two-dimersuch that a continuous functigh: X — A hasf(a) = o for all
sional environments (for example, Lumelsky’s “bug” algorithne € A. In fact, the point-GVD is indeed strong deformation
[8]); or (3) the configuration space is assumedto be Euclidean (etract, the image of a continuous functigh: X — A that
diffeomorphic to a Euclidean space), which does not accuratéyhomotopic to the identity map. Since any path in the robot’s
represent many robots, including rod-shaped ones, nor addre$tgss space can be “retracted” onto the point-GVD, planar path
the issues of inferring distance to configuration space obstaci#anning between two points is achieved by planning a path onto
using sensor data. The goal of this work is to develop provalilye point-GVD, along the point-GVD and then to the goal.
correct rod motion planning schemes that can be robustlyOne intuitive way of viewing the point-GVD is as the set of
implemented with realistic sensors. centers of circles that are tangent to two or more obstacles; since

The results presented in this paper are based on two relatieel set of points on a circle are equidistant to its center, when
areas of previous work: Voronoi diagrams[9] and incrementtide circle “touches” the boundary of two or more obstacles, the
methods to construct geometric structures [6], [10]. The firstlireenter is at least two-way equidistance to nearby obstacles. Nat-
of research starts with the generalized Voronoi diagram (GVD)sally, this circle is elastic and thus can extend and contract as
a roadmap that was first used for motion planning in [11]. Adts center moves along the point-GVD.
tive research in applying Voronoi diagrams to motion planning Choset and Burdick extended the point-GVD into higher di-
began with O’Dunlaing and Yap’s work [12], which considereghensions by defining the generalized Voronoi graph (GVG).
motion planning for a disk in the plane. Let us denote the GV{/hereas the point-GVD is equidistant to two obstacles in the
as the point-GVD to later distinguish it from its rod counterparplane, the point-GVG is equidistant to three obstacle®in
The point-GVD is defined in terms of a distance function  (Fig. 2). Here, instead of looking at the centers of circles that
touch two obstacles, consider the centers of spheres that are
tangent to three or more obstacles; the centers of such spheres
) ) ) .. will be at least three-way equidistant. The point-GVG by it-
wherer € R® andC; is a convex obstacle. The basic buildinget s not connected, thus additional structures termed higher
block of Fhe .pomt-GVD IS the twg-ngdstant surjective Ui qer \ioronoi graphs are defined. The resulting roadmap is the
facel WhI.Ch is a set of points equidistant to two convex ObSt?J'oint—hierarchical generalized Voronoi graph (point-HGVG).
cles and is denoted The Voronoi diagram method in [12] was extended to the case
8Si; = {r eR™ : (d; — d;)(r) = 0andVd;(r) # Vd;(r)} where the r?bot is arod in. [13], but it reqyires full knowledge

of the world’s geometry prior to the planning event. Instead of

ﬁj = {7’ € Cl(SS“) : dz(7) < dh(T) \V/h}

di(r) = min [|r — |

lin R2, 8§, is one-dimensional and thus should be callezlieve but in
R™ for m > 2, 8S;; is a surface and since we will be using this as a surface 2We use the term surface to represent unbounded structures and faces to rep-
later on, we will termSS;; structures as surfaces. resent bounded ones.
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Fig. 3. The configuration of a rod is determined by thandy coordinates of
P and the orientation of the rod with respect to the horizontal.

The second line of research started with an incremental
approach to creating a Voronoi diagram-like structure, which is
limited to circular robots in the plane [17]. To our knowledge,
Fig. 2. The ceiling is removed from this rectangular enclosure that hasﬂ&e only endeavor_s pert_alnlng to sgnsor-pased adaptations of
rectangular prism in its interior. The solid line segments correspond to theadmaps for configuration space dimensions greater than two
set of points equidistant to three obstacles, i.e., the point-GVG. Consider fgge Rimon and Canny’s extension [4] of the Opportunistic
“front-most” edge at the bottom of the figure. Imagine a sphere that touches s e
floor, front wall and ceiling (which is not displayed so we can see inside). TiEgth Plan_ner method [2] and Choset and Burdick’s '.ncremental
center of this sphere traces the point-GVG edge associated with these ti@@Struction procedure for the point-GVD and point-HGVG
obstacles. This center of this sphere can be used to trace the remaining p¢&]; [18].

S%ﬁéggtgntgegxgﬁgs spikes" in the comers of the workspace, the Sphete p | pitation of these roadmaps is that distance measurements
are assumed to be made in a configuration space (or some pa-
. rameterization of it). This assumption is reasonable for config-
looking at circle, the set of point equidistant to a point, O’'Dlngration spaces that are Euclidean, but extra care must be taken
laing and Yap considerrace-track the set of points equidistantfor non-Euclidean configuration spaces. Latombe [3] addresses
to arod [13]. They use the term race-track because the locugi§ problem for potential functions defined in non-Euclidean
points equidistant to a rod looks like a race-track; it has twshaces by considering a set of control points on the robot and
straight edges parallel to the length of the rod and two semi-Cifren summing the potential function for each control point. He
cular caps that go around the two end-points of the rod.  then applies the chain rule on the distance function and forward
The set of rod configurations where the race-track is tangadihematic map to determine a true gradient in the non-Euclidean
to three or more obstacles forms a one-dimensional set in #gace. The first contribution of this paper uses a similar method
rod’s configuration space. This observation motivated our defo derive the gradient of a distance function in a non-Euclidean
nition of the rod-GVG edge (see below) in that O’'Dunlaing angpace.
Yap did not have to resort to explicitly constructing a config-
uration space to define a structure in it. Our work rests upon [1l. ROD DISTANCE FUNCTION

this key result which we were then able to take two steps fur- Definition 1: A rod R is a line segment of length that has
ther. Although their race-track edge and our rod-GVG edge al€o end pointéP andQ '

the same, our first contribution is that we supply a method byThe configuration space of the rodd€(2) (SE(2) ~ R? x

which the rod-GVG can be constructed with on-line data. Ouf1) | e, pe the configuration of the rod and let it be determined

second contribution is that we developed a straight forward agg thez andy coordinates of the poinP and the orientation

sensor—baseq way to connect disconnected rod-GVG edges;dhee rod with respect to the horizontal, i.e..= (z,y.6)"

approach by O'Dunlaing and Yap requires full knowledge of thgig. 3). Forg € SE(2), let P(q) be thex andy coordinates of

environment. the pointP, let 6(¢) be the orientation of the rod and 18 q)
Subsequently, Cox and Yap [14] developed an “on-lingje the set of points in the plane that the rod occupies. When the

strategy for path planning for rods. Although this method ca@d achieves configuration Note thatP(q) € R?, 6(q) € S*

be readily modified with tactile sensors for sensor-based usezjig R(q) c R2. Let superscript§ and? denote ther andy

does not provide a roadmap of the rod robot’s free space. Tdwordinates, respectively, of a point in the plane. For example,

goal of the work described in this paper is to define a roadmap¢)* is thex coordinate of the poinP at configuration.

for a rod in its configuration space and demonstrate that it canAssume a rod robok is operating in a subs&v of RZ. W is

be constructed using realistic sensors. Finally, Yap developg@pulated by obstaclés, . . ., C,, which are convex sets. Non-

cellular decomposition for rod path planning where each cellé®nvex obstacles are modeled as the union of convex shapes. It

defined in terms of critical points of rod-contact function [15]is assumed that the boundaryfis a collection of convex sets,

Takahashi and Schilling [16] develop heuristic approaches thveltich are members of the obstacle §€t}.

lifts the point-GVD into configuration space for a rectangularly Definition 2: (Rod Single Object Distance) The rod single

shaped robot. Their heuristics for rectangular robots bapbject distance function is the distance between an obstacle

similarities to the approach we present for a rod robot, whigtnd a rod? when the rod is at a configuratignlt is determined

can be viewed as a degenerate rectangle of zero width. Byr

example, they position the rectangle to be “tangent” to the _ . ]

point-GVD much in the same way we forkredges. Di(g) = ,,cRI(fllﬁcci I =l @
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Fig. 4. The distance from the rod (thick solid line) to an obstacle is the distangg). 5. The thick solid lines are rods which are in the configuration two-

(dotted line) between the nearest point on the rod to the obstacle and the neasgsidistant face defined by obstacl€s and C;. The light dotted lines

point on the obstacle to the rod. delineate the distance to the nearest obstacle. The thick dotted line is an
example of a rod which is not in a configuration two-equidistant face because
it is closer toC'; thanC’;. The thick dashed line is not in the two-equidistant

An important characteristic db;(g) is that it can be readily face either because it is closerdt .
computed from sensor measurements made in the workspace.
For example, the rod robot in Fig. 4 may have range sensors ¢isguired to deal with nonconvex sets that are modeled as the
tributed around its perimeter. The distance between the obstaglesn of convex sets. More technically, the pre-image theorem
and the rod is the measurement of the range sensor associgigflires this inequality condition to guarantee that configura-
with & local minima of measurements. tion two-equidistant surjective surfaces are indeed co-dimen-

It can be shown that the rod-distance function is continuodg,n one. In other words, these surfaces are two-dimensional
and smooth in the interior of the workspace for convex sets. TBgpmanifolds ofS E(2).

multi-object rod-distance functiod)(g) = min; D;(g),isalso  the configuration two-equidistant face
continuous but not smooth (even for convex obstacles).

CFU :{q € CI(CSS“) :

IV. Rob-GVG: BUILDING BLOCK OF THEROD-HGVG .
Di(q) =Dj(q) < Dn(z) Vh#4,5} (4)
Using work space distance information, we can now define

the roadmap structure for the planar rod in its configuration . . o
space,SE(2). The rod roadmap is defined in three steps: firstS the set of configurations equidistant to obstacleandC;,
we define the rod-GVD which is two dimensional and hencd/ch that each point icl(CSS;;) is closer toC; and C; than
not a roadmap (The rod-GVD was termed the Voronoi cordy Other obstacle. See Fig. 5 for examples of rods whose con-
plex in [13]). Second, based on the rod-GVD, we define tHigurations are in configuration two-equidistant faces. _
rod-GVG, which is one-dimensional, but not necessarily con- The rod generalized Voronoi diagram (rod-GVD) is the union
nected in a connected component of the free space and thugfi@!l configuration two-equidistant faces, i.e.,

not a roadmap. Finally, in the next section, we define an ad-

ditional structures, which when combined with the rod-GVG, n—1 n

form a roadmap termed the rod-HGVG. rod-GVD= | | |J ¢7i. (5)
i=1 j=it1l

A. Rod-GVD

The basic building block of the rod-GVD is the setrofi B. Rod-GVG
configurationsequidistant to two sets; andC’;, which we term

) . - Consider the intersection of two configuration two-equidis-
the configuration two-equidistant surface

tant surfaces ity £(2). Assuming the intersectiontisansversal
[19], two two-dimensional manifolds intersect to form a one-di-
CS;; = {q € SE(2) : Di(q) = D;(q) > 0} @) mensional manifold ir6 £(2). Our goal is to create a network
of one-dimensional manifolds that will form our roadmap. The
pre-image theorem (with the transversality assumption) assure
Of particular interest is the subset®$,;, termed the configu- us that wherC.F;, andCF;; intersect, the result is nominally
ration two-equidistant surjective surface, a one-dimensional manifold whe®;(q) = D;(q) = Di(q).
In actuality, the one-dimensional manifold is the three-way in-
tersection ofCF;i, CF;; andCF ;. One would think that in-
CS88i; ={q€CS;; : VDi(q) # VD;(q)} (3) tersecting two configuration equidistant faces is sufficient, but
we require the additional intersection to enforce that all gradient
L ) . o vectors are indeed not equal to each other. Accordingly, one can
which is the set of configurations;, that are equ.|d|sta.nt 10 4efine the configuration three-equidistant face
two objects such tha¥ D;(q) # VD;(q). For configurations
g whereVD;(q) # VD;(q), the functionV(D,; — D;)(q) is
guaranteed to be surjective. Loosely speaking, this definition is CFij =CFi;(CFi NCFjk (6)
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Fig. 9. Placements of a long rod along the rod-GVG, which, in this figure, is

. . - ] . connected.
Fig. 6. The thick solid lines represent three configurations of the rod whose

configurations are in the rod-GVG edge defined by obsta€lgs”; andC..
The thin dotted lines represent the distance between the rods and an obstacl{

e |V o ¥ v
| | AT A A

| Fig. 10. Placements of a short rod along the rod-GVG, which, in this figure,
i i 5 T —E TR TEEE T (S NOt connected.

Fig. 7. Placements of rod touching obstacles correspond to rod bound : - :
configurations. Note that at these configurations, the rod touches thrﬁ% end points of the rod-GVG edges. With these structures in

obstacles, i.e., the rod is three-way equidistant at a distance of zero. hand, we can define the rod-GVG.
Definition 3: Therod-GVG is a collection of edges com-
e prising rod-GVG edges and nodes comprising rod-meet config-

urations and rod-boundary configurations.
Fig. 9 displays the “swept volume” of the rod as it passes
! through the rod-GVG for the rod in the environment demon-
strated in Figs. 7 and 8. Here, the resulting rod-GVG is con-
nected. That that all of the rod-GVG edges have end points:
meet configurations and boundary configurations. Fig. 10 con-
| tains the swept volume of a smaller rod robot in a the same en-
e — vironment. There are no rod-meet nor rod-boundary configura-
Fig. 8. Diagonal placements of rod correspond to rod meet configuraltiortg,)nS in this example and the rod-GVG edges are diffeomorphic
configurations of the rod that are four-way equidistant. to S1.
We use standard numerical construction techniques to con-

to be the set of configurations where the rod is equidistaifUct the rod-GVG by simply tracing the roots of the expression

to three obstacles. For rod configurationsS#'(2), we term G _ | Di(g) — D;(q) -
CFiji as arod-GVG edge(Fig. 6). rod(q) = Di(q) — Dr(q) |~ 7)

A rod-GVG ed be>?-h hic toS*
ro edge may omeomorphic or a hen Groalg) = 0, we haveD;(g) = D;(g) and Di(g) =

one-dimensional manifold with zero-dimensional bound% dh by t ivit _p This i
end-points. In the latter case, the end-points of the rod-G -(g) and hence by ransitivi wﬂ'(q) = Di(g). This gives
a rod-GVG edge configuratianwhereD;(¢) = D;(q) =

edges are boundary configurations and/or meet configurations. X . ) ;

The rod-boundary configurations are configurations where f(h@' Adkg_ytfeaturfe hetr_e IS tp.a(%o‘l(@(;stdefmedd'? terms

distances to the three closest objects is zero. Fig. 7 contaid"® rod- Istance function which can determined Irom range
ghsor readings, as described in Section Ill. In other words,

examples of rods placed at boundary configurations. The K dist t truct th
configurations correspond to the end-points of the ”spike§lSIng WOrk space distance measurements, we can construct the

in the point-GVG. Next, the configuration four-equidistanEOd'GVG edge in configuration space. The explicit derivation

face is defined by the intersection of rod-GVG edges, i. QT the curve tracing technique can be found in the Appendlix.

CFijrit = CFiju(CFira(\CFirt ()CF . For rod config-
urations inSE(2), CF;;x; is a rod meet configuration. Fig.
contains configurations of rods at rod meet configurations. Recall that a roadmap is a one-dimensional network of curves
The rod meet configurations and boundary configurations ateat have the properties of accessibility, connectivity and de-
3 O'DUnlaing and Yap [13] define their one-dimensional three-way equidigartab!l!ty.m each connected component of the free space.
qssibilityis the property that the rod can move from any con-

tant structure when the race-track surrounding the rod touches three or m% TR - A
obstacles. figuration in the workspace to a configuration on a rod-GVG

8 V. ACCESSIBILITY: RETRACTION OF AJUNCTION REGION
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edge. He, we demonstrate that the rod-GVG (by itself) has the
accessibility property, but we use this result as a building block | Ck C; G
for the connectivity proofin a later section. The accessibility al-

gorithm described below prescribes a path to a rod-GVG edge

such that the rod moves with a fixed orientation. In a sense, this
reduces the problem to accessibility of a point in a planar con- C \

figuration space because the configuration space of a rod with a
fixed orientation isR?. / \

Rod accessibility is achieved in two steps. L&t be the
closest obstacle to a rad. While maintaining a fixed orienta-
tion, the rod moves away froi; until it is double equidistant
with objectC}. In other words, it follows a path

CFijn CFist

Fig. 11. The two clusters of solid lines represent rods whose configurations
. ~ are triply equidistant to three obstacles. The left cluster represents rods whose
1 (t) = VDi(cl (t)) configurations are elements of the rod-GVG eddg; ;.. and the right cluster
are elements a@t.F ;.. In this example, both rod-GVG edges are diffeomorphic
Once the rod robot achieves double equidistance, it then mowes$! (i.e., they are cyclic) and neither rod-GVG edge is connected to any other

away from the two closest objects, while maintaining doubf@d-GVG edge.
equidistance, until the rod attains triple equidistance to objects

C;, C; andCy. So, the robot follows a path a rod-GVG edge form a connected set. With this in mind, we
) - define the gunction regionJ;;x, as the set of configurations
ex(t) = 7z, e, VDilex(t)) that access the rod-GVG ed@#; ;.. Note that neithey7; ;. nor

CF;i is guaranteed to be connected. The goal is to show that

Seach connectedr;;; has an associated connectgg,. So, we

will then show thatZF;;; is a retract of7;;. This result will

be useful in demonstrating connectivity of the rod roadmap.

Lemma 1: The set of all configurations that access the same

?nnected component of a rod-GVG edge form a connected set.
Proof: Let ¢; and ¢» be two arbitrary configurations

that access the same connected component of a rod-GVG

_Proof; Without_loss of generality, assume the rod lies in gdge CF i at configurationszt and ¢j. By definition, both
configurationy; thatis closest to obstacte . Given that the rod configurations lie in the same junction regigh;,. There is

is located in a bounded space, continuity of the distance funcugrb " N ' :
, e ) ath fromg; to ¢f and then togs and finally to g that is
ensures that when the rod follows a pafte) = V.D;(cy(#)) it fully contained in7;;x. Sinceq and g2, were arbitrary, all

\tN'"C?”.'VG ga cori|gll;rat|orq2 where objecC’; is equidistant configurations which access the same connected component of
° Lot |De ZﬁqQ) — D](QQ)' Using th s i 1 10d-GVG edge form a connected set.
et D(q) = miny, Dy.(q). Using the results in nonsmooth ™ v 510 now going to develop a retractigh for each con-

analysis [10], [20], it can be shown that,cr,,VDi(q) = : . ; . o
wr.cr.VD,(q), both of which are equal fo the gener_nected component of a junction region using the accessibility

: ; . criterion:
alized gradient ofD projected ontoZ,CF,;;. Therefore, Corollary 1: There exists a continuous map : Jj. x
as _Iorr:g asq_ch_?ijlz;(q) (or WthCrf;inrl])j(Q))thdofs rE’t [0,1] — Ji,, whereH (¢, t) describes the rod accessibility path
vanish, continuily of.2? ensures that the pa o) = starting at a configuration = H(g,0) € J;;z and arriving at
T, (ﬂcfz.jVDi(cQ(t)) will reach a configurationgs where

- . . . : qd = H(q,l) S Cf‘zﬂx
rl?)ij-qé)ve_ Dj(gs) = Di(gs), i-e., a configuration on the = g0 1o Appendix for the proof of this corollary. The union of

When obstacles lie in general position, there will be an isﬂ]e clogqre of the junqtion regions fills the configuration space,
) . . . But their is some ambiguity about the common boundary of ad-
!ated conflguratlorq* that is a local minimum oD on CJT”_’ jacentjunction regions. For the ease of notation, assume that the
€., mr,.c7;, VDi(g") = 0 [5] for a nongeneric configuration 'y .on access either rod-GVG edge associated with the shared
¢". In this scenario, the rod configuration needs to be slight

oundary of adjacent junction regions. This assumption is rea-

perturbed in order to escape the local minimum using gradlesrgnable because the boundaries of junction regions form a set

ascent. If the obstacles are not in general position, then th‘?)\;emeasure zero and any slight perturbation from this set auto-
is a connected set of configurations(iif’;; that form a degen- matically puts the rod in a specific junction region.

erate local minimum. In this scenario, the rod robot need only

to move in a fixed direction until it escapes the set of minima.
Thus far, we have defined the rod-GVG and demonstrated that VI. THE ROD-HGVG

all configurations in the free space can access a configuratiorit was shown in [13] that the configuration rod-GVD is con-

on the rod-GVG. However, there is more structure and detaicted. However, the rod-GVG is not necessarily connected as

to be exploited in the accessibility procedure that we can usan be seen in Fig. 11. In order to connect the rod-GVG, we

to demonstrate connectivity later on. We will show below thatefine additional structures, termétiedges, that link discon-

all configurations that access the same connected componemexted rod-GVG edges by exploiting the property that the point

wherer is the projection operator ar’rdfpz(f> projects onto the
tangent spacé, ). Alternatively, this path can t3e defined a
ég(t) :~ T,y (yCFi; VDj(CQ(t)) becauseerqcfij VD, (q) =
7rTqC.7:ij VDJ(Q)

Proposition 1: (Rod Accessibility) In a bounded environ-
ment, the rod-GVG has the accessibility property for almost aﬁ
configurations in the rod’s free space.
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Fig. 12. The dark line segment on the left represents a rod configuration u:
CF ;. and the dark segment on the right represents a rod configuration in Lo . . . .
CF . These rods are connected by the point GVG efige The point GVG Fig. 13. The solid lines delineate three configurations of a rod _that]]kém).

edge gives rise to a linking structure termed fxedge which connecta; B(r) is the angle which describes the tangent space to the point GVG edge at

andCF . the pointr.

GVG is connected in the plane. See Fig. 12. Fhedges are the It can easily be seen thitis a continuous mapping'(r) can

set of rod configurations that correspond to placements of tA@ Viewed as all the rods that lie in the tangent space of a two-
rod R(q) that are tangent to the point-GVG edge. The point @qwdls_tant surjec_tlve surface (and thus a two-equidistant face)
tangency with the rod, as described below, is “normally” one &t & pointr. See Fig. 13 for an example bfr).

the rod end pointsP or @, except when the rod passes through Let the R-two-equidistant surjective surface defined By

the isolated point,;, on the point-GVG edgeF;; that is a andC; be
local minimum ofd; (or d;) restricted ta#;;. In this case, the

rod “slides” throughrp,,;,, maintaining tangency wittf;;. See

Fig. 14. o . SinceRSS;; ~ S8S;; x R, the dimension ofRSS;; is two

In formally defining thek-edges, we pay careful attention tq a4l that inR?, the dimension 0fS;; is one [5]). RSS;;
embedding the tangent space of the point-GVG edge into (;E?‘%y be viewed as (but is not) a tangent bundIS 6 ;.
configuration space of the rod. Note that this requires us to in-| ot the R-two-equidistant face be the set of cojnfigurations
troduce some notation which we use to prove thathedges oqigistant to two obstacles such tiggt there exists a point,
are indeed one-dimensional and yield the result that the rod i3  that is closer to obstacle andc; than any other point

tangent af” or () except at the local minimum. Next, we intro-,, the rod andll) no other obstacle is closer to the rod than the
duce two lemmas that echo the results of [5] that connect djg;, equidistant obstacles. In other words

connected point-GVG networks. Finally, in this section, we de-
scribe an algorithm for constructing the rod-HGVG. In the next RF;; ={q € cl(RSS;;) : such thatlr € R(q)

section, we discuss connectivity. (I) di(r) < di(r1) Vr1 € R(q)
and d;(r) < d,;(r) and

Recall that the tangent space of a planar point-GVG edge (IT) di(r) < Dulq) Vh # 1,5} (11)

is the line orthogonal to the line segment which connects the s (2), an R-two-equidistant face is termed dhedge, (de-
nearest points of the two nearest obstacles which locally deﬁﬁ@tedRij) because it is one-dimensional, as shown by the fol-
the point GVG edge [6]. Le€’;(r) be the closest obstacle to agwing proposition.
points in the plane. In this vein, let; be the vector which con-  The inequalityl d;(r) < d;(r1) Vr1 € R(q) determines
nectsr and the closest point toon the closest obstact;(r).  how the rod is tangent to the point GVG edge. kgt be the

We define a mapping(r) that describes the tangent space qoint in ;; where the distance t6; and C; is the smallest
a point-GVG edge at a point so that we can embed thistangen@_e_' for allr € Fij\{7min} di(r) > di(rmin)). For all points
spape into the workspace of the robot. gt SS;; — St pe r € Fij\{Tmin}, the rod is tangent to the point GVG edgefat
defined as or Q. Otherwise at,;, the rod is free to slide along the tangent

NE ) ) 7r space of the point GVG edge. See Figs. 14 and 15.
plr) = arctangeriei(r) — ¢;(r) + 5 ®) Proposition 2: The R-edges are one dimensionalst(2).

wherer /2 is measured in radians. It can be shown thét) Pdroof:h Assume Wlthout I(_)ssf olf general_lty tha('; obstacles
is a continuous function for convex sets [12] and thiuis a < @ndC; have one unique pair of closest pointsandc;. Let
continuous function. the distance between these two point2bk,;,,. Therefore, for

Let the mappind” : SS;; — SFE(2) be defined as all pointsc; € Ci\{¢; } and for all points:; € Cj, [ley —caf| >
2D..in. This assumption implies that there exists a unique point,
r® 4+ Leos(B(r)) Tmin € 88;ij, Whered; (rmin) = d;("min) = Dumin and for all
L(r) =< ¥ +1sin(B(r)) :1€R 3. (9) other pointsr € SS;;\{rmin}, di(r) = d;(r) > di(rmin) =
/3(7) dj (Tmin) .

A. Definition and Dimension Count of R-Edges
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GVG edge c Fig. 16. Placements of rod along the rod-GVG whBredges intersect them.
J

for all y € nbhd(ruyim) () R(g). Therefore, all such configura-

tions can be identified witr,,,;,, } x [0, L] which is also one-di-
Fig. 14. The rod is moving from left to right while remaining tangent to th‘?nensional
point GVG edge defined by obstacl€s andC';. The thick solid lines represent . . L.
different configurations of the rod in aR-edge. The dotted lines represent 1he inequalityd;(r) < D (q) Yh # 4,5 forces the rod
the shortest distance between the rod and the nearby obstacles. Note, fotcalbe closest to obstaclés; and C;, but does not affect the
configurations where the rod it tangent to- the closest point on the rod to dimensionality of the edges
C; andC; is eitherP or Q. . y . .

The incremental construction technique of fkedges is the

same as the incremental construction procedure for point GVG
edges (described in [6]), which is amenable to sensor-based im-
plementation. Hence, th&-edges can be constructed in an in-

cremental fashion using only line of sight information.

B. Definition and Algorithm for the Rod-Hierarchical
Generalized Voronoi Graph

Definition 4: (Rod-HGVG) The rod hierarchical generalized
A mmmmmmmmm—— . NJoronoi graph (rod-HGVG) is the collection of rod-GVG edges
i ) _ . andR-edges.

Fig. 15. Placements of rod along the R-edges for the environment in Fig. 10..|.he following two lemmas indicate that a linking strategy
using theR-edges echos the linking strategy defined by the
The proof follows in two steps. First, we show that for all consecond order GVG for the point-GVG in higher dimensions [5].
figurationsg € RF;; whered;(r) > Dy, there existsaunique Lemma 2: The R-edges are subsets of configuration two-

configuration of the rod that is tangent to the point-GVG anequidistant faces.

that satisfies the inequalities in (11) (in fadt(r) = D;(q)). Proof: Recall that for all configurationg € R;;, there ex-
Second, we show that the set of configurations wheygy) = ists anr € R(q) such thatl;(r) < d;(r1) andd;(r) < d;(r1)
Dy,;in forms a one-dimensional curve #¥(2). for all pointsr, € R(g). SinceD;(q) = min,cr(q).ccc; [I7 —

Consider the case wherg(r) > D.,,. Assume the point ¢||, d;(r) = D;(¢) andd;(r) = D;(g). Therefore for all con-
of contactr is neitherP(g) nor QX(¢). By (11),D;(q) = d;(r) figurationsq € R,;, D;(q) = D;(q) and thus for ally € R;;,
which is greater thatD,,;,, by hypothesis. Let the projectiong € CF,;.
of the distance gradient atonto the rod berR(q)Vdi(r). We Lemma 3: For all configurations; € R;;, the rod does not
knowT g4y Vd;(r) does not vanish becausk(q) > D, i.€., intersectany obstacle (with the exception of poifitsr @ lying
d,;(r) restricted to the rod never obtains a local minimum in itsn the intersection of two obstacles).
interior becauseé; is a convex function defined on a convex set  Proof: By definition, for all¢g € R;;, there exists €
(the rod) and all values af; are greater tha®,,;y,. R(q) such thatl;(+1) > d;(r) forall r1 € R(q). Sinced;(r) >
Hence, —mryVdi(r) # 0 and there exists ao0,forallr, € R(q),d;(r1) > 0because we assume the rod does
y € nbhd(r) N R(g) such thatd;(y) < d;(r). This vio- not fully intersect an obstacles boundary. Thus, with perhaps
lates the inequalityd; (r) < d;(r1) Vr1 € R(q) (from (11)). the exception of the poin® or ), the rod does not intersect an
Thus, the only points for which the rod may interséct;; obstacle.
and maintain the inequality};(») < d;(r1) Vr1 € R(q), is By definition of the R-edges, it can be easily seen that the
either P(g) or Q(q). Therefore, all configurationg € CSS,; terminating conditions of aRk-edge are either on the boundary
that satisfy the inequalityl;(r) < d;(r1) ¥r1 € R(q), can of the environment or when the rod is equidistant to three ob-
be identified withSS;; x {P(q)} or §S;; x {Q(q)}, both of stacles, i.e., a point on a rod-GVG edge. See Fig. 16.
which are one-dimensional. The algorithm for constructing the rod-HGVG is rather
Now, consider the case Whede(rmin) = d,(rmin) = Dimin.  Straightforward; essentially it is a graph search of configuration
7r(q) Vdi(Tmin) Vanishes for the set of configurations wherspace. The robot accesses the rod-GVG from any configuration
di(rmin) = dj(rmin) = Dmin. Thus, for all configurations of using the accessibility criterion. It identifies the configuration
the the rod where.,;,, [ R(g) = rmin, there always exists a where it accessed the rod-GVG as a node and then incrementally
neighborhoodnbhd(rmin) () R(q), whered;(y) > d;(rmin) constructs the rod-GVG edge until it re-encounters the access
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node or a rod meet configuration. All nodes are put on a queut
While generating the rod-GVG, the robot also marks as node WF'
the configurations wher&-edges intersect the rod-GVG edge. v

| Y Y
These nodes are also put on aqueue. The robot then generates
unexplored edge, either a@-edge or another rod-GVG edge, i _
associated with the first node on the queue which is taken off th i A A

queue when all edges emanating from the node are explored. h
new nodes, other than boundary configurations, are encounter
these nodes are placed on the queue as well. When a boundary

configuration is encountered, the robot simply terminates tracifily- 17-  Placements of rod along the rod-HGVG.
and goes to the next node on the queue. Exploration is complete

when there are no nodes left on the queue, i.e., all nodes hgygposition guarantees that there exists a path between two
no unexplored edges emanating from them. adjacent rod-GVG edges if and only if there exists a connected
R-edge linking them.
Lemma5: Letq; € CFyj, andge € CF;; such that and
¢ are also on ak-edge,R;;, CF;;, andCF;;; are in adjacent
Proposition 3: Let ¢; and g, be two configurations of the junctions regionsz, andg, are path connected if and only if the
rod. There exists a path betwegnandg, if and only if there R-edge between them is connected.
exists a path on the rod-HGVG betweHiq;, 1) andH (g2, 1) Proof: If ¢ andg, lie on a connecte®-edge then there
where H is the function which describes the accessibility patéxists a path between andg..
of the rod from an initial configuration to a configuration on the If there exists a path between and ¢, then there exists
rod-GVG. a point based GVG edgé;;, which connectgg?, ¢¥]* and
Proof: First we show the converse of this statement. Bz, g4]7 in the plane. Thek-edge which connectg and
Proposition 1 and Corollary 1, there exists a path betwgenis the image of a connected subset®f;, which connects
andH (g, 1) and there exists a path betwegrandH (g2, 1). If  [¢%, V17 and[g§, ¢5]7, underl. The R-edge is a connected set
there exists a path frof (¢, 1) to H (g2, 1) onthe rod-HGVG, because the image of a connected set under a continous function
then there exists a path betwegnandgs. is a connected set. Lemma 3 guarantees that all configurations
Next, we show that if there exists a path betweemndg., of the rod on thek-edge do not intersect any other obstacle.
then there exists a path betweBr{q¢;, 1) and H(g2,1) on the By Lemmas 4 and 5, if there exists a path betwgeandgs,
rod-HGVG. If g1 € J;; andgz € J,,4- and there exists a paththen there exists a path betweHiig;, 1) andH (go, 1) and thus
between them, then there exists a series of adjacent junctihs rod-HGVG is connected.
regions, 7k, Jiji, - - - » Jpqr through which this path passes. From Section V, we demonstrated that the rod-GVG and
The problem of connectivity is now reduced to demonstratirigence the rod-HGVG (because the rod-GVG is a subset of the
that: (i) if two R-edges intersect a configuration three-equidised-HGVG) has the accessibility property and Proposition 3
tant faceCF ;i then there exists a path between the two edgeasures the rod-HGVG has the connectivity property, making
if and only if there exists a path between the two edge&®y}:,  the rod-HGVG a roadmap in the classical sense. From [6], it
and (i) there exists a path between two rod-GVG edges in agkn be shown that at least one point from a configuration on the
jacent junction regions if and only if there exists Aredge that rod-HGVG will be within line of sight of at least one point from
links the two rod-GVG edges. any configuration in the free space and hence the rod-HGVG
Lemma 4: Let 41, 4> be two configurations in a junction has the departability property. Therefore, the rod-HGVG is a
region J;;x. g1 andg, are path connected within a junctionroadmap. See Fig. 17 for an example of a rod-HGVG.
Jijk, if and only if H(¢1,1) and H (g, 1) are path connected

in CFj. VIIl. DISCUSSION

Proof: By definition, CF;;. C Jij;%. By Proposition 1 ) )
and Corollary 1, there exists a path betwegrand H(g;,1) A Comparison of Point-HGVG and Rod-HGVG

and there exists a path betwegnand H (g2, 1). Therefore, if ~ The rod-HGVG has inherited properties from both the planar
there exists a path betwedh(g:,1) and H(G2, 1) in CF;j,, and three-dimensional HGVG for a point. By definition, just
then there exists a path betwegnandgs in ;. like the point-GVG inR3, the rod-GVG is triple equidistant
Recall from Corollary 1 that there exists a continuous funte three objects becau®® and SE(2) are both three-dimen-
tion, H(q, t) which describes the accessibility for the rod.  sional. Also, the point-GVG it* and the rod-GVG are not
Let s(¢) be a continuous function which describes a path froguaranteed to be connected and thus additional structures are
d¢1 to g such thats(0) = §; ands(1) = .. For allt € [0,1], defined to connect them. In the case of the point GVG, second
H(s(t),1) € CF;;x. The image of the path betweén and order GVG edges connect the GVG whereasfihedges link
g» underH (s(¢).1) is a connected path aivF,;;, because the rod-GVG edges.
image of a connected set under a continuous mapping is a conHowever, the structure of the rod-HGVG is simpler than
nected set. that of the point-HGVG because the rod-GVG does not con-
Now, it needs to be shown that thie-edges connect thetain occluding edges. Occluding edges are structures in the
rod-GVG edges in adjacent junction regions. The followingoint-HGVG that represent positions where obstacles appear

VIlI. CONNECTIVITY OF THE ROD-HGVG
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and disappear; i.e., points where obstacles become occludeuiewed as a one-dimensional graph embedded in a three-dimen-
unoccluded. Typically, occluding edges appear “on top of” @ional configuration spac&E(2). Since a bulk of the motion
“below” obstacles in three-dimensions. The rod-HGVG dogdanning occurs on the rod-HGVG, a search algorithm between
not have occluding edges because the rod completely liestwo configurations is reduced from a three-dimensional search
the plane and hence never has to “go over” anything in ordera one-dimensional one.

to ensure completeness. Since the rod-HGVG is defined in terms of work space dis-
tance measurements, it can be constructed using sensor data.
B. No Strong Deformation Retract This paper provides a derivation of a distance function and its

Re_call th‘fﬂ the planar point-GVD is a ret_ract ofthe plane [12 radient required some care beca§4e(2) is not a Euclidean
This is desirable because' a retract (continuously) captures Ace. The gradient is not only a function of configuration but it
topology of the robot’s environment arld thus for each connectgdmso a function of the body-fixed coordinate frame of the rod,
component of the free space, there is a connected retract. i, reflects the lack of bi-invariance of any metricd (2).
fortunately, three dimensional spaces populated with obstacleg)sing work space distance function and the lifted gradient
in general do not have one-dimensional retracts because thgfg configuration space, the robot can systematically generate
does not exist in general a function that maps the three-dimeRe 10d-HGVG, thereby exploring the robot's configuration
sional manifold to a one-dimensional manifold that is contingpace. It is worth pointing out that the robot never explicitly
Uousandthe |dent|ty on the One'd|mens|0na| man|f0|d. Instea%nstructs the Configuration Space_ |nstead, the rod_robot
we divided the configuration space into a cellular decompositig@nstructs a roadmap representation of it. This is important
where there exists a retraction in each three-dimensional Ceﬂﬁ‘ sensor-based p|a_nning because before it can construct
The junction regions are the cells and the rod-GVG edges aFe configuration space the robot needs to know its entire
the retracts of the junction regions. We then uggedges to workspace which is not known a priori in exploration tasks.
link adjacent cells, thereby forming a roadmap (which is notrurthermore, this approach has the added benefit of saving

g:dient in the configuration spacer(2). Derivation of the

retract) of SE(2). computational time in constructing the configuration space,
which is useful even when full knowledge of the robot's
C. Rod HGVG Depends Upon Choice of Body Frame environment is available.

One of this method’s limitations is that it assumes there are
range sensors distributed throughout the body of the rod. Dis-
crete sensor placements should adequately approximate such a
; . ) sensor distribution, but this approximation is currently being in-
given any two pointgpy,p2 € SE(3), the distance betWeenvestigated. Ultimately, we will extend this paradigm to a rod
these pointsd(ps, p2), is the same ag(T'p, Tpz) for all T' € flying around in a three-dimensional space which introduces an
S,E(3)' This means, changing the chatlon of the world COOkrder of magnitude difficulty in determining sensor placement.
thate frame .does not.change th dlstancg between tW_O poiﬂﬁauy, there are environments where range sensor information
in SE(3). A right-invariant metric in SE(3) is one for which - ¢4nn6t he readily provided, so a robot must rely on visual sensor
given any two two pointg,p» € SE(3), the distance be- yaq visual exploration using roadmaps is a current topic of re-
tween these pointsi(p:,p2), is the same ad(p: 7, p2T) for  gagrch.
all T € SE(3). This means that changing the location of the Another area of future research considers the nonholonomic
body fixed coordinate frame does not affect the distance hgnstraints for the rod robot. Currently, we assume the rod
tween two points irf £(3). It was shown in [21] that no metric can instantaneously translate and rotate in any direction. For
in SE(3) can be both left-invariant and right-variant, i.e., N@ wheeled robot in cluttered workspaces, this assumption may
metric in SE(3) can be bi-invariant. Note that the gradient ithot be reasonable. However, it is worth pointing out that the
(19) depends upon the choice of a body-fixed coordinate framed robot “appears” to move as if it has steerable wheels. Con-
this reflects the lack of bi-invariance $1£(2) and SE(3). sider a rod moving from the far left to the right and then up

The definition of the rod-HGVG uses the gradient in (19%etween the two obstacles in Fig. 17. The rod first slides along
This means that the rod-HGVG depends upon the choicetht R-edge on the bottom of the figure, then approximates
the body-fixed frame. This is consistent with the configuratioa parallel park-type maneuver to rotate in place and finally
space formulation [22] which also depends upon the choiitefollows the vertical R-edge to move up. Future work will
of the body-fixed frame. So, just as the configuration spacemonstrate how the rod-HGVG may approximate nonholo-
depends upon the choice of a body-fixed frame, so shoulchamic constraints.
roadmap of that space. This work is the next step toward the ultimate goal of sensor-
based planning for an articulated multi-body chain robot. The
roadmap result here will first be extended to a rod floating in
three dimensions. The next step will be to extend the rod result

This paper introduces a retract-like structure calledrtte to that of a convex body. Once a roadmap and exploration
hierarchical generalized Voronoi graghod-HGVG). Using the procedure for a single convex body is accomplished, we will
rod-HGVG, a planar rod-shaped robot can plan a path betwesttempt the two-body problem and then théody problem
any two configurationSyssa.+ andgg..1. The rod-HGVG can be (Fig. 18).

It is interesting to note that full gradient definitioiD;(g)
reflects the lack of bi-invariance of all metrics F\&'(2) and
SE(3) [21]. A left-invariantmetric in SE(3) is one for which

IX. CONCLUSION



CHOSET AND LEE: RETRACT-LIKE STRUCTURE FOR A PLANAR ROD ROBOT 445
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/ consider the partial derivative with respectito
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From (12),

Fig. 18. Outline of future research.
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APPENDIX | Note that the vector — r is orthogonal to the tangent
space of the boundary of the obstaclecats well as to the
A. Rod Distance Gradient tangent space of the boundary of the robotratNote that

: : : _— . [0c* 10z, 0¢¥ /0x]T is an element in the tangent space of the
In actuality, the rod-distance function definition also appheéc [0z, det /O] g P

to measuring distance between two convex sets. Therefore,
section is devoted to the gradient of the distance between t
convex sets. The distance between the robot and a convex ob
stacle is simply the distance between the pair of closest pomts

oundary of the obstacle and th&t:/9x cos 6 — 9b/dx sin 0,
Wf/ax sin 6 4+ 9b/9x cos 6] is an element in the tangent space
he boundary of the robot. Therefore, the dot products of
7 with both of these vectors is zero and thus we have

on the robot and obstacle. That is, aD;(q) 1 (e (15)
= r—c).
) Oz D;(¢)
Di = -7
(@) rerln lle =l

Using similar analysis, we can easily conclude that

measures the distance between a convex robot and a convex ob-
stacle, where € S E(2) andR(q) are the set of points iR? that aD;(q) 1 v 6
the robot occupies. Note that this definition is identical to (1). dy  Di(q) (r? = ). (16)

Assume a world coordinate frame whose axesXrendY
and a body fixed coordinate frame dhwhose axes ard and Finally, conside®D; /30
B. Let(z, y)* be the origin of the body fixed coordinates in the
world coordinate frame and létdenote the orientation of the dD;(q) 1 <( v <8c-’f ar-’f)

body fixed coordinate frame with respect to the world coordi- 9§  D;(q) 90 08

nate frame. Let be the closest point on the obstaclgto the . (O O
robot R and letr be the closest point on the roh&tto the ob- + (¢ = 1Y) < 50 " 50 )) : (17)
stacleC;. Finally, let(a, b) ber in the body fixed coordinate
frame. See Fig. 19. Therefore, the world coordinatesief From (12),
x cos@ —sinb| |a
7)2[}4_[_ }[} ar® da 0 '9—%'9—b P
y sinf®  cosf b (12) 50 ~ 0 cos asin 70 sin cos

x4 acos@ —bsinb arY  Oa ab
= |:y+asin9+bC089:| 50 —%51119—1—@(3059—1—%COSH—bst (18)
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Substitute the above int@&D;(¢)/86 in (17) to obtain

%__1 (¢® — ") %—%COSG
960 D \\" """\ o0 " ae

adb
+asin 6 + 90 sin € + bcos 9) Vor Graph

, o [OY  Da :
(e =) <W el sinf : Corrécting
ab Plane
—acosf — 90 08 6 + bsin 9) ) Tangent (Slice)
1 <[(c”—7’“”)} <|:CLSiIl9+bCOS€:| A
" Di(g) \L(¢? =7¥) |7\ | bsinf — acosf Fig. 20. Sketch of continuation method.

9c” 7 da b s
n 53% _ ?Cosﬁ—gsmﬁ
=7 | 56 sinf + 52 cos 6 The function G,.a(y; A) assumes a zero value only on a

1 < {(cw - Tl‘)} {asine + beos 9} > rod-GVG edge. Hence, if the Jacobian®f,, which is

Dz(q) (cy — 7>y) bsinf — acos @ I ( . )\) _ (VDi(y; )\) _ VDj(y; )\))T (21)
1 {c“”—ﬂ”_T{O 1} |:COS€ —Sinq [a} yHrredll A) = (VD;(y; ) — VDi(y; \)T
Di(q) [¢*=r¥] [=1 O] |sin¢ cos® | |b is surjective, then the implicit function theorem asserts that the
1 & —r 17 To 1| |U* roots ofG,.q (y; A) locally define arod-GVG edge ads varied.
:Df,(q) [cy -7 | [_1 0} [Uy } Arod-GVG edge is constructed by numerically tracing the roots
1 of G. The explicit edge construction procedure has two steps: a
:Di(q) (c=r)xU predictor step and a _corrector step. The predictor step moves
—U x Vdi(r) the robot for a small distance along the tangent of the rod-GVG.

The tangent direction is the null spacelgfG...q [23]. This null
where U is described in world coordinates. That isspace can be computed by

{ Vd;(r) } (19) SinceTy G,.q comprises distance information, it can be readily
U x Vdi(r) computed with line of sight sensor information.

whereVd;(r) is a 3x 1 vector that is the gradient of a single TYPically, the prediction step takes the robot off of a
object distance function evaluatedsaand [/ is as described "0d-GVG edge, so a correction procedure is required to bring

above. Note that the cross product of two planar vectors idf§ oot back to the rod-GVG. If step size along the tangent

scalar because the only meaningful component to the resultlﬁpdlsma"'” then the graph will intersect a “correcting plane”

cross product vector is the™ component that sticks out of the (F19- 20), which is a plane orthogonal to the tangent. The

plane spanned by the two co-planar vectors. The cross proo‘ER:'ireCtion step finds the location where the rod-GVG intersects
0 1 the correcting plane (Fig. 20) and is achieved via a iterative

of two-vectorsS andT'is often written ass™ | = | 7. Newton’s Method. If/* and \* are thekth estimates ofy and
A, thek + 1st iteration is defined as
. . . .y —1 . .
INCREMENTAL CoﬁsPTPREL’J\ICDTIT(o:\: OF THEROD-GVG Y =0 = (LG, X)) Groal”, \Y) (22)
Now that we have defined the rod-GVG, we use standaY‘fJ']ereTUG“"l is the Jacobian of+.oq restricted to the cor-
numerical construction techniques to constr,uct it. Assume tH’g{:ting plane evaluated g5, \*).
the rod has accessed the rod-GVG. ketbe the basis of the Now, it _n_eeds to be Sho"_V” that: .
Proposition 4: The matrix1,G..q (restricted to the cor-

tangent space of the rod-GVG edge at configuratiand let recting plane) is invertible
21, %2, 23 be the basis of the tangent spacesdf(2) at¢. That . o . .
LA 2 I 9 P (2) atg Proof: This proof is done in two steps. First, we know

is, 21, 22, 23 can be viewed as a coordinate frame whose origj (TG h Kt hich i imol
is located ay. Let A be a parameter which represents a displac 1a r0d (1) has rank two which 1S a simple consequence
of transversality. Sinc&€F;; and CF;;, transversally inter-

ment in thez; direction and le®” be the plane spanned by
da ina th h the origin defined by, This ol . sect, thell[ CF;; # oI T,CF;; wherea € R. Therefore,
andz3 (passing through the origin defined Y. This plane is —Dj(@)) # aV(D;(g) — D)) and hence the two

termed the “normal plane” and is orthogonattgthe tangent of V(Di(a)

the rod-GVG. Incremental construction of the rod-GVG edge f§V/S 0fT'Groa(g) are linearly independent of each other.
et g Second, we show that therank(TGoa(q)) =

achieved by tracing the roots of the expres A) =0 .
y g pressia(y; ) rank(T, Groa(y; A)). In fact, we show the two matrices are

for Y as the parametey varies: : . " .
ve P in fact equal. Once this is shown, then the proposition easily
D;i(y; \) — Dj(y; A) follows thatrank(T'Grea(g)) = rank(T,Groa(y; X)) = 2, i€,

Groa(y; A) = Di(y; A) — Di(y; \) (20) T, Groa is invertible.
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Now, we will show that rank(7G,.a(q)) =
rank(T, Groa(y; A)). Let v is a unit vector that is parallel

to z;. That is, : g
0
v=a((VDi(q) — VD;(q)) x (VDi(q) — VDi(q))). (23) _
Then '
Fig. 21. When we rotate; to ¢;, the distanceD. (¢) and the closest point on
v-VDi(q) =a((VDi(g) — VD;(q)) the rodr(q,) does not change.
x (VDi(q) — VDi(q)) - VDi(q) | L+ > \ which i radict
—a(VD; _ VD c1 — 1| + |x1 — x2| > |c1 — 22|, WNICN IS a contradiction.
o (2) i(a)) Therefore,
“((VDi(q) — VDr(9)) x VDyi(q))
=a(VD;(q) — VD;(q)) |di —do| < A
(=VDy(q) x VDi(q)). (24)  Also, fore;’s, letS; andS, be the spheres centered:orandz

with radiusd; andds, respectively and; c; be the line segment

Also, . ) . .
connecting:; andes. Consider a line segment whose end points
v-VDi(q) =a((VD;(q) — VD;(q)) are on each sphere such that the segment itself does not intersect
X (VDi(q) — VDi(q)) - VDi(q) the interior of either spher_e. Since the _centers of the sphere are
— (VD vD A apart, the length of this line segment is at mbst |z — x»|.
=a(VDi(g) = VD;(q)) Therefore,
~((VDi(g) = VDx(q)) x VDi(q))
~a(VDi(g) = VD;(2) o= el <A (29)
-(VD;(q) x VDy(q)) Given two configuration of the rog; andgs, let g,,, be the
=a(VD;i(q) — VD;(q)) configuration such tha®(g,,,) = ©(q1) and P(g,,,) = P(g2).
. (_VDk(q) X VDZ((])) Thenad((le (_Zrn) S d(qb q2) andd(Q% (_Zrn) S d(qb q2)- Then,
=V - VDZ((]) (25) |7)1 - Trn| S |P(Q1) - P(an)| S d(qb an) S d(le QQ)

Following similar steps, we can see that V.D;(q) = v - wherery, 7, are closest points on the rod to the obstacle at each

VD;i(q). Sou-VD;(q) = v-VD;(q) = v-VDy(q). Thatmeans configurations. _
the projections oV D, m = i, 4, k in 2 has same length. So, NOW we consider,,, andg». Let ¢;r; be the vector defined
by two points¢; and»; and PQ(g;) be the vector defined

VD;(q) —VD;(q)=[0 VyD;(y)—VyD;(y)] (26) by P and@Q, the two end points of the rod at the configu-
i , . ration ¢;. Given g;, if Z(PQ(q:))(cir;) # #/2, thenr; is

w_hereV, Vy den_ote the grad'e_”t with respect to ambient ar@l either P or ). For t(hosé c)ggﬁigu)rations,/ we can find a
slice plane coordinates respectively. rod configurationg; such thatP(¢;) = P(¢)), ri = +, and

So, in local coordinates, L(PQ(d))(cirs) = m/2* (See Fig. 21) So, given,, andg,
Ta 3y = (0 VyDi(¢)— VyD;(q)) 7 let ¢/, andg) be such configurations for eagh, andg.. Then,
2Groa(yi X) = (0 VyDi(q)—VyDu(q)) )~ @7) |re — rm| = |ry — 71,], SO, without loss of generality, we
assume that (PQ(gm))(emrm) = Z(PQ(q2))(car2) = /2.
S0,TGroa = [0 TyGroa] = [0 7y TGrod]- Let p,; be the radius of curvature of the wall of the obstacle at

Since 7, G0q is invertible, (22) is well posed. Practicallyci andL be the length of the rod. Then
speaking, this result states that the numerical procedure defined
by (22) will be robust for reasonable errors in robot position,  [7m — 72| KM|(D(gm) + p(¢m))O(gm)
sensor errors and numerical round off. — (D(q2) + p(q2))O(2)]

M (max(D(gm), D(g2)) + p)d(qm, g2)
M (max(D(gm), D(g2)) + p)d(q1, 22)

RoD-GVG EDGES ARERETRACTS OFJUNCTION REGIONS for some constanmt/. Then, assuming that there is no ‘flat’ wall,

In this section, we prove Corollary 1 that demonstrates thAt< Pmax for some constand’ and since the environment is
each rod-GVG edge is a retract of a junction region. We do gggunded, .8.D(g) < Dinax, for someD ax. Thus,
by showing that thed function, or more specifically a pertur- [ — 72| < K'd(q1,q2).
bation of theH function, is a retraction.

Proof: Given two pointse; andze € R™ with |21 — 22| =

A and a convex obstaclg, let ¢;, c» be the closest points on Ir1 — 12| <|r1 — 7| + [ — 72
the obstacle ta{, z» respectively. Also, let; andd, be their ,
respective distance to tEe obst}ellcle. Without loss of generality <dq1, g2) + K'd(q1, g2) = Kel(q1, ¢2) - (29)
assume that;, < dy. If dy — dy > A, thend, > dy + A = Al = el =1y

<
APPENDIX IlI
<

whereK’ = (Dyax + pmax ). Therefore, for any; andg
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from (29) and (30),

|V (r(H(q1,t)) — Vi (r(H(g2,1)))| < Mid(q1, ¢2)
for some constant{; . Since,

|(r1 —c1) = (r2 — e2)| < (|r1 — ea| +1r2 — e2) < 2d(q1, g2),
it follows that

[Vd;(r1) — Vd;(r2)| < 2d(q1, g2)-

Fig. 22. Herer. andr,, are the closest points on the rod at conflgurat@ps Also, for U andU
andy,,, each and/_ is point on the rod aj- corresponding te,,, aty.... Then (QI) (QQ)

[P = 72| < 7o = 70|+ 117 — 72 < L6 + (p(az) + Di(g2) 8. [U(H(q1,)) — U(H(g2, 1))
for some constank’ = (1 + K”). Then, from (28) and (29), = |(r = P(H(q1. 1)) = (r2 = P(H(g2,1)))]
| <l — o] < K ) (30) = |(r1 —r2) — (P(H(q1,t)) — P(H(g2,1)))]
aTelsnmRis e <|(rs = r2)| + | P(H(qu ) = P(H gz, D).
for somekK.
Now, we want to show:H(q,t) satisfies Lipschitz con- Therefore,
dition with respect tog in free space. First, for gradient |U(H(q1,t)) — U(H(q2.1))| < Mad(q1,q2)
ascent from the closest obstaclé(q,t) = H(q) =
Dy (H(q,))V(D1(H(q, 1)), which is for some constant/,. _
) Hence, we have the equation shown at the bottom of the
H(q,t) =D1(H(q,))VD1(H(q,t)) page for some constanf&’ and M”. Since|U| < L and
_ Vdi(r(H(g,1))) [Vy(r(H(g2, )| = [r(H(q2, 1)) — c(H(q2,t))| < M™ for
U(H(q,t)) x Vd, (7( (g, 1)) someM’” from the boundedness of the envitonment,

whereVd; (r) = (r —c¢) andU(q) = r(q) — P(q). We wantto |[U(H(q1,t)) x Vdi(r(H(q1,?)))

show that —U(H(q2,t)) x Vdy(r(H(g2,1)))| < Nd(q1,q2)
\H(q1,t) — H(g2,t)| < Mlg1 — ga] for someN.
for some constanf/ (see the equation at the bottom of the So,H(g t) also satisfies Lipschitz condition, i.e.,
page). |E(q1,t) — H(ga,1)| < Md(q1, 42)
Since

) for some constant/ for any ¢; andg.. Therefore there exists
[V (r(H(q1,t)) = Vdi (r(H(g2, 1)) =|(r1 — c1) = (r2 = &2)| H(q,t) which satisfies above condition and also continuous on
<|ri — 72|+ |e1 — 2|t and the initial condition, i.eg [24].

: . Vi, (r(H(gs, 1) — Vi (r(H(g,1)))
(a1, 8) = a2 1= | 17 p1(g, 1) % Vel (r(H g1 ) — U(H(g2,1)) % Vely (r(H (g2, £)))

[U(H(q, 1) x Vi (r(H g1, 1)) — U(H(q2,1)) x Vedy(r(H(g2, 1))l
=|U(H(q1,t)) x Vdi (r(H(q1, 1)) = U(H(q1, 1)) x Ves(r(H(g2,1)))
+U(H(q1,t) x Vo (r(H(g2, 1)) — U(H(ga, 1)) x Vo (r(H(gz, 1)))]
(

=|U(H(q1,t)) x (Vdy (r(H(q1,1))) — Vdy(r(H(g2,1))))
+ (U(H(q1, 1)) — U(H(g2,1))) x Vo (r(H(g2, 1))

<|U(H(q1, 1)) x (Vi (r(H(qu, 1)) — Vdy(r(H(g2, 1))l

+|(U(H(q1, 1)) — U(H(g2,1))) x Vdy(r(H(g2,1)))]
<IU(H (g, DIV (r(H ar, 1)) — Viy(r(H(gz, 1))l
+ [(U(H(q1, 1)) — U(H(q2, )| Vda(r(H(gz, 1))

(22
SM'd(q1, g2)|U(H g1, )| + M"d(q1, q2)[V o (r(H g2, 1))
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For gradient ascent with double-, triple-equidistant, sincg16] O. Takahashi and R. J. Schilling, “Motion planning using generalized

H(% t) — WTV(Dl), or H(q, t) — V(Dl _ Dg) etc., it also voronoi diagrams,IEEE Trans. Robot. Automatol. 5, pp. 143-150,
. o - Apr. 1989.
satlsﬂe_s th? condition. o o [17] N. S. V. Rao, N. Stolzfus, and S. S. lyengar, “A retraction method for

At this point, we could usél as our accessibility criterion and learned navigation in unknown terrains for a circular robi@&EE Trans.
our retraction. From here we can conclude thatdhg ;, is a Robot. Automayol. 7, pp. 699-707, Oct. 1991.

. . . . . . . [18] H.Choset, W. Henning, F. Hickman, R. Knepper, D. Jackson, S. Walker,

retraction of ajunction reg'Odijk usingH. In |mplementat|on J. Flasher, and A. Alford. (1999) Software to Generate the GVD and
we useH, which is defined asf = H(q,t)/D(H(q,t)). HGVG. [Online]. Available: http://voronoi.sbp.ri.cmu.edu/

[19] V. Guillemin,Differential TopologyA. Pollack, Ed. Englewood Cliffs,
NJ: Prentice-Hall, 1974.
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