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Sensor-Based Construction of a Retract-Like
Structure for a Planar Rod Robot

Howie Choset, Member, IEEE,and Ji Yeong Lee

Abstract—Sensor-based planning for rod-shaped robots is
necessary for the realistic deployment of noncircularly symmetric
robots into unknown environments. Whereas circularly symmetric
robots have two-dimensional Euclidean configuration spaces,
planar rod robots posses three degrees-of-freedom, two for posi-
tion and one for orientation, and hence have a three-dimensional
configuration space, (2). In this work, we define the rod
hierarchical generalized Voronoi graph (rod-HGVG) which is a
roadmap of the rod’s configuration space. Prior work in Voronoi-
based roadmaps use a retraction of the robot’s free space to define
the roadmap; here, we break a part the robot’s free space into
regions where fragments of the roadmap are defined and then
connect the fragments. The primary advantage of the rod-HGVG
is that it is defined in terms of workspace distance measurements,
which makes it amenable to sensor-based planning. This paper
also includes a numerical procedure that generates the rod-HGVG
edge fragments using only information that is within line of sight
of the rod robot. It is worth noting that this procedure does
not require an explicit definition of configuration space, i.e.,
this procedure constructs a roadmap of rod configuration space
without ever constructing the configuration space itself.

Index Terms—Generalized Voronoi graph, retractions, rod-
shaped robots, sensor-based motion planning, Voronoi diagrams.

I. INTRODUCTION

SENSOR-BASED planning makes use of sensor informa-
tion reflecting, at best, line-of-sight information of the en-

vironment, in contrast to classical planning, which assumes full
knowledge of the environment prior to planning. This paper de-
velops an exploration technique for rod-shaped robots which
posses a three-dimensional (3-D) configuration space .
Conventional planners first construct the robot’s configuration
space and then perform planning in the configuration space.
However, for sensor-based planning, this is not possible be-
cause the environment is not knowna priori and hence the con-
figuration space for the rod cannot be constructed. Hence, the
robot must construct a representation of the configuration space
without explicitly constructing the configuration space itself.

This paper presents a method to incrementally construct a
geometric structure, termed aroadmap, that captures the salient
geometric features of the rod’s configuration space. Canny orig-
inally defined a roadmap as a one-dimensional subset of the free
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space that is connected within each connected component of
the free space [1], [2]. All algorithms that use a roadmap as-
sume that there exists a path between any point in the free space
to the roadmap. A planner uses the roadmap by finding a path
from both the start and the goal to the roadmap and then be-
tween their respective “accessed” points on the roadmap. If the
start and goal lie in the same connected component of free space,
then their respective accessed points lie on the same connected
roadmap component. This is how roadmaps “capture the con-
nectivity” of the free space [3].

Motivated by Rimon and Canny’s work [4], we use a sensor-
based definition of a roadmap. A roadmap is a one-dimensional
network of curves that have the following important properties:
accessibility, connectivityand departability. These properties
imply that the planner can determine a path between any two
points in a connected component of the robot’s free space by
first finding a path onto the roadmap (accessibility), traversing
the roadmap to the vicinity of the goal (connectivity) and then
constructing a path from the roadmap to the goal (departability).
When full knowledge of the world is available, then departa-
bility can be viewed as accessibility, but in reverse. However, if
a priori knowledge is not available, the planner must determine
on-line when to depart the roadmap, as opposed to determining
a path from the goal to the roadmap. If the planner can construct
the roadmap using line-of-sight sensor information, then it has
in essence explored the free space because the planner can use
the roadmap to plan future excursions through the free space.

This paper defines a new roadmap for rod-shaped robots
whose configuration space is and prescribes the incre-
mental construction procedures to construct the roadmap, i.e.,
explore an unknown configuration space. Since explo-
ration is more general than navigation, we will focus discussion
on exploration in this paper. This new roadmap, termed rod
hierarchical generalized Voronoi graph (rod-HGVG), is defined
in terms of distance to workspace obstacles. This feature is
important for sensor-based planning because we can use real
sensory data to construct the rod-HGVG. In Section III, we
demonstrate how to lift workspace distance into configuration
space through the forward kinematic map. Computing the
gradient (really the differential) of the distance in configuration
space is nontrivial because we need to factor in orientation
motion, as well as translational motion.

With the definition of distance and gradient in-hand, in
Section IV, we then present the rod-generalized Voronoi graph
(rod-GVG), whose definition was motivated by the generalized
Voronoi graph (GVG) [5], a roadmap for a point operating in.
Unfortunately, just like the point-GVG, the rod-GVG is not guar-
anteed to be connected in a connected component of free space
and thus in Section VI we define additional structures resulting

1042–296X/01$10.00 © 2001 IEEE
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in the rod-hierarchical generalized Voronoi graph (rod-HGVG)
which is proven to be a roadmap of in Section VII.
The major challenge here is to demonstrate connectivity of the
roadmap in its configuration space. We demonstrate connectivity
by dividing the free space into cells called junction regions where
the rod-GVG edges serve as retracts of the junction regions and
then we use the point-GVG to connect the retracts (i.e., the
rod-GVG edges) of adjacent junction regions.

Finally, using numerical methods similar to those presented
in [6], we present an incremental construction technique for
the rod-HGVG. Essentially, these numerical continuation tech-
niques trace the roots of an equation comprising workspace
distance functions and thus this procedure only requires dis-
tance information that sensors provide. Once the rod-HGVG
is constructed, then the rod robot has essentially explored its
configuration space because it can use the rod-HGVG for future
excursions into the configuration space. This paper presents
one of the first formulations of an algorithm that explores an
non-Euclidean configuration space.

II. RELATION TO PRIOR WORK

Sensor-based planninghas received increased attention,as it is
a requirement for realistic deployment of autonomous robots in
unstructured environments. For a review of many sensor-based
planningtechniques,see[7].Unfortunately,currentsensor-based
planning methods are limited because: (1) many are based on
heuristic algorithms and it is therefore impossible to prove if they
will work in all possible environments; (2) proof of convergence
for other algorithms is limited to the case of a point in two-dimen-
sional environments (for example, Lumelsky’s “bug” algorithm
[8]); or (3) the configuration space is assumed to be Euclidean (or
diffeomorphic to a Euclidean space), which does not accurately
represent many robots, including rod-shaped ones, nor addresses
the issues of inferring distance to configuration space obstacles
using sensor data. The goal of this work is to develop provably
correct rod motion planning schemes that can be robustly
implemented with realistic sensors.

The results presented in this paper are based on two related
areas of previous work: Voronoi diagrams[9] and incremental
methods to construct geometric structures [6], [10]. The first line
of research starts with the generalized Voronoi diagram (GVD),
a roadmap that was first used for motion planning in [11]. Ac-
tive research in applying Voronoi diagrams to motion planning
began with Ó’Dúnlaing and Yap’s work [12], which considered
motion planning for a disk in the plane. Let us denote the GVD
as the point-GVD to later distinguish it from its rod counterpart.
The point-GVD is defined in terms of a distance function

where and is a convex obstacle. The basic building
block of the point-GVD is the two-equidistant surjective sur-
face,1 which is a set of points equidistant to two convex obsta-
cles and is denoted

and

1In , SS is one-dimensional and thus should be called acurve, but in
form > 2, SS is a surface and since we will be using this as a surface

later on, we will termSS structures as surfaces.

Fig. 1. Solid line segments correspond to the set of points equidistant to two
obstacles, i.e., the point-GVD.

where is a unit vector based at, the closest point to
and pointing away from along a line defined by and .

In constructing the point-GVD, we are interested in a subset of
termed the two-equidistant face2 which is defined as

For an environment with obstacles, the point-GVD is
. See Fig. 1.

Ó’Dúnlaing and Yap show that the point-GVD is aretract
of the robot’s free space. Recall that the retract is a set
such that a continuous function has for all

. In fact, the point-GVD is indeed astrong deformation
retract, the image of a continuous function that
is homotopic to the identity map. Since any path in the robot’s
free space can be “retracted” onto the point-GVD, planar path
planning between two points is achieved by planning a path onto
the point-GVD, along the point-GVD and then to the goal.

One intuitive way of viewing the point-GVD is as the set of
centers of circles that are tangent to two or more obstacles; since
the set of points on a circle are equidistant to its center, when
the circle “touches” the boundary of two or more obstacles, the
center is at least two-way equidistance to nearby obstacles. Nat-
urally, this circle is elastic and thus can extend and contract as
its center moves along the point-GVD.

Choset and Burdick extended the point-GVD into higher di-
mensions by defining the generalized Voronoi graph (GVG).
Whereas the point-GVD is equidistant to two obstacles in the
plane, the point-GVG is equidistant to three obstacles in
(Fig. 2). Here, instead of looking at the centers of circles that
touch two obstacles, consider the centers of spheres that are
tangent to three or more obstacles; the centers of such spheres
will be at least three-way equidistant. The point-GVG by it-
self is not connected, thus additional structures termed higher
order Voronoi graphs are defined. The resulting roadmap is the
point-hierarchical generalized Voronoi graph (point-HGVG).

The Voronoi diagram method in [12] was extended to the case
where the robot is a rod in [13], but it requires full knowledge
of the world’s geometry prior to the planning event. Instead of

2We use the term surface to represent unbounded structures and faces to rep-
resent bounded ones.
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Fig. 2. The ceiling is removed from this rectangular enclosure that has a
rectangular prism in its interior. The solid line segments correspond to the
set of points equidistant to three obstacles, i.e., the point-GVG. Consider the
“front-most” edge at the bottom of the figure. Imagine a sphere that touches the
floor, front wall and ceiling (which is not displayed so we can see inside). The
center of this sphere traces the point-GVG edge associated with these three
obstacles. This center of this sphere can be used to trace the remaining point-
GVG. Note that for the “spikes” in the corners of the workspace, the sphere
contracts and expands.

looking at circle, the set of point equidistant to a point, Ó’Dún-
laing and Yap consider arace-track, the set of points equidistant
to a rod [13]. They use the term race-track because the locus of
points equidistant to a rod looks like a race-track; it has two
straight edges parallel to the length of the rod and two semi-cir-
cular caps that go around the two end-points of the rod.

The set of rod configurations where the race-track is tangent
to three or more obstacles forms a one-dimensional set in the
rod’s configuration space. This observation motivated our defi-
nition of the rod-GVG edge (see below) in that Ó’Dúnlaing and
Yap did not have to resort to explicitly constructing a config-
uration space to define a structure in it. Our work rests upon
this key result which we were then able to take two steps fur-
ther. Although their race-track edge and our rod-GVG edge are
the same, our first contribution is that we supply a method by
which the rod-GVG can be constructed with on-line data. Our
second contribution is that we developed a straight forward and
sensor-based way to connect disconnected rod-GVG edges; the
approach by Ó’Dúnlaing and Yap requires full knowledge of the
environment.

Subsequently, Cox and Yap [14] developed an “on-line”
strategy for path planning for rods. Although this method can
be readily modified with tactile sensors for sensor-based use, it
does not provide a roadmap of the rod robot’s free space. The
goal of the work described in this paper is to define a roadmap
for a rod in its configuration space and demonstrate that it can
be constructed using realistic sensors. Finally, Yap develops a
cellular decomposition for rod path planning where each cell is
defined in terms of critical points of rod-contact function [15].
Takahashi and Schilling [16] develop heuristic approaches that
lifts the point-GVD into configuration space for a rectangularly
shaped robot. Their heuristics for rectangular robots bare
similarities to the approach we present for a rod robot, which
can be viewed as a degenerate rectangle of zero width. For
example, they position the rectangle to be “tangent” to the
point-GVD much in the same way we form-edges.

Fig. 3. The configuration of a rod is determined by thex andy coordinates of
P and the orientation of the rod with respect to the horizontal.

The second line of research started with an incremental
approach to creating a Voronoi diagram-like structure, which is
limited to circular robots in the plane [17]. To our knowledge,
the only endeavors pertaining to sensor-based adaptations of
roadmaps for configuration space dimensions greater than two
are Rimon and Canny’s extension [4] of the Opportunistic
Path Planner method [2] and Choset and Burdick’s incremental
construction procedure for the point-GVD and point-HGVG
[5], [18].

A limitation of these roadmaps is that distance measurements
are assumed to be made in a configuration space (or some pa-
rameterization of it). This assumption is reasonable for config-
uration spaces that are Euclidean, but extra care must be taken
for non-Euclidean configuration spaces. Latombe [3] addresses
this problem for potential functions defined in non-Euclidean
spaces by considering a set of control points on the robot and
then summing the potential function for each control point. He
then applies the chain rule on the distance function and forward
kinematic map to determine a true gradient in the non-Euclidean
space. The first contribution of this paper uses a similar method
to derive the gradient of a distance function in a non-Euclidean
space.

III. ROD DISTANCE FUNCTION

Definition 1: A rod is a line segment of length that has
two end points and .

The configuration space of the rod is
. Let be the configuration of the rod and let it be determined

by the and coordinates of the point and the orientation
of the rod with respect to the horizontal, i.e.,
(Fig. 3). For , let be the and coordinates of
the point , let be the orientation of the rod and let
be the set of points in the plane that the rod occupies. When the
rod achieves configuration. Note that ,
and . Let superscripts and denote the and
coordinates, respectively, of a point in the plane. For example,

is the coordinate of the point at configuration .
Assume a rod robot is operating in a subset of . is

populated by obstacles which are convex sets. Non-
convex obstacles are modeled as the union of convex shapes. It
is assumed that the boundary ofis a collection of convex sets,
which are members of the obstacle set .

Definition 2: (Rod Single Object Distance) The rod single
object distance function is the distance between an obstacle
and a rod when the rod is at a configuration. It is determined
by

(1)
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Fig. 4. The distance from the rod (thick solid line) to an obstacle is the distance
(dotted line) between the nearest point on the rod to the obstacle and the nearest
point on the obstacle to the rod.

An important characteristic of is that it can be readily
computed from sensor measurements made in the workspace.
For example, the rod robot in Fig. 4 may have range sensors dis-
tributed around its perimeter. The distance between the obstacle
and the rod is the measurement of the range sensor associated
with a local minima of measurements.

It can be shown that the rod-distance function is continuous
and smooth in the interior of the workspace for convex sets. The
multi-object rod-distance function, , is also
continuous but not smooth (even for convex obstacles).

IV. ROD-GVG: BUILDING BLOCK OF THEROD-HGVG

Using work space distance information, we can now define
the roadmap structure for the planar rod in its configuration
space, . The rod roadmap is defined in three steps: first,
we define the rod-GVD which is two dimensional and hence
not a roadmap (The rod-GVD was termed the Voronoi com-
plex in [13]). Second, based on the rod-GVD, we define the
rod-GVG, which is one-dimensional, but not necessarily con-
nected in a connected component of the free space and thus is
not a roadmap. Finally, in the next section, we define an ad-
ditional structures, which when combined with the rod-GVG,
form a roadmap termed the rod-HGVG.

A. Rod-GVD

The basic building block of the rod-GVD is the set ofrod
configurationsequidistant to two sets and , which we term
the configuration two-equidistant surface

(2)

Of particular interest is the subset of , termed the configu-
ration two-equidistant surjective surface,

(3)

which is the set of configurations,, that are equidistant to
two objects such that . For configurations

where , the function is
guaranteed to be surjective. Loosely speaking, this definition is

Fig. 5. The thick solid lines are rods which are in the configuration two-
equidistant face defined by obstaclesC and C . The light dotted lines
delineate the distance to the nearest obstacle. The thick dotted line is an
example of a rod which is not in a configuration two-equidistant face because
it is closer toC thanC . The thick dashed line is not in the two-equidistant
face either because it is closer toC .

required to deal with nonconvex sets that are modeled as the
union of convex sets. More technically, the pre-image theorem
requires this inequality condition to guarantee that configura-
tion two-equidistant surjective surfaces are indeed co-dimen-
sion one. In other words, these surfaces are two-dimensional
submanifolds of .

The configuration two-equidistant face

(4)

is the set of configurations equidistant to obstaclesand ,
such that each point in is closer to and than
any other obstacle. See Fig. 5 for examples of rods whose con-
figurations are in configuration two-equidistant faces.

The rod generalized Voronoi diagram (rod-GVD) is the union
of all configuration two-equidistant faces, i.e.,

rod-GVD (5)

B. Rod-GVG

Consider the intersection of two configuration two-equidis-
tant surfaces in . Assuming the intersection istransversal
[19], two two-dimensional manifolds intersect to form a one-di-
mensional manifold in . Our goal is to create a network
of one-dimensional manifolds that will form our roadmap. The
pre-image theorem (with the transversality assumption) assure
us that when and intersect, the result is nominally
a one-dimensional manifold where .
In actuality, the one-dimensional manifold is the three-way in-
tersection of , and . One would think that in-
tersecting two configuration equidistant faces is sufficient, but
we require the additional intersection to enforce that all gradient
vectors are indeed not equal to each other. Accordingly, one can
define the configuration three-equidistant face

(6)
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Fig. 6. The thick solid lines represent three configurations of the rod whose
configurations are in the rod-GVG edge defined by obstaclesC , C andC .
The thin dotted lines represent the distance between the rods and an obstacles.

Fig. 7. Placements of rod touching obstacles correspond to rod boundary
configurations. Note that at these configurations, the rod touches three
obstacles, i.e., the rod is three-way equidistant at a distance of zero.

Fig. 8. Diagonal placements of rod correspond to rod meet configurations,
configurations of the rod that are four-way equidistant.

to be the set of configurations where the rod is equidistant
to three obstacles. For rod configurations in , we term

as a rod-GVG edge3 (Fig. 6).
A rod-GVG edge may be -homeomorphic to or a

one-dimensional manifold with zero-dimensional boundary
end-points. In the latter case, the end-points of the rod-GVG
edges are boundary configurations and/or meet configurations.
The rod-boundary configurations are configurations where the
distances to the three closest objects is zero. Fig. 7 contains
examples of rods placed at boundary configurations. These
configurations correspond to the end-points of the “spikes”
in the point-GVG. Next, the configuration four-equidistant
face is defined by the intersection of rod-GVG edges, i.e.,

. For rod config-
urations in , is a rod meet configuration. Fig. 8
contains configurations of rods at rod meet configurations.
The rod meet configurations and boundary configurations are

3 O´ ’Dúnlaing and Yap [13] define their one-dimensional three-way equidis-
tant structure when the race-track surrounding the rod touches three or more
obstacles.

Fig. 9. Placements of a long rod along the rod-GVG, which, in this figure, is
connected.

Fig. 10. Placements of a short rod along the rod-GVG, which, in this figure,
is not connected.

the end points of the rod-GVG edges. With these structures in
hand, we can define the rod-GVG.

Definition 3: The rod-GVG is a collection of edges com-
prising rod-GVG edges and nodes comprising rod-meet config-
urations and rod-boundary configurations.

Fig. 9 displays the “swept volume” of the rod as it passes
through the rod-GVG for the rod in the environment demon-
strated in Figs. 7 and 8. Here, the resulting rod-GVG is con-
nected. That that all of the rod-GVG edges have end points:
meet configurations and boundary configurations. Fig. 10 con-
tains the swept volume of a smaller rod robot in a the same en-
vironment. There are no rod-meet nor rod-boundary configura-
tions in this example and the rod-GVG edges are diffeomorphic
to .

We use standard numerical construction techniques to con-
struct the rod-GVG by simply tracing the roots of the expression

(7)

When , we have and
and hence by transitivity, . This gives

us a rod-GVG edge configurationwhere
. A key feature here is that is defined in terms

of the rod-distance function which can determined from range
sensor readings, as described in Section III. In other words,
using work space distance measurements, we can construct the
rod-GVG edge in configuration space. The explicit derivation
of the curve tracing technique can be found in the Appendix.

V. ACCESSIBILITY: RETRACTION OF A JUNCTION REGION

Recall that a roadmap is a one-dimensional network of curves
that have the properties of accessibility, connectivity and de-
partability in each connected component of the free space.Ac-
cessibilityis the property that the rod can move from any con-
figuration in the workspace to a configuration on a rod-GVG
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edge. He, we demonstrate that the rod-GVG (by itself) has the
accessibility property, but we use this result as a building block
for the connectivity proof in a later section. The accessibility al-
gorithm described below prescribes a path to a rod-GVG edge
such that the rod moves with a fixed orientation. In a sense, this
reduces the problem to accessibility of a point in a planar con-
figuration space because the configuration space of a rod with a
fixed orientation is .

Rod accessibility is achieved in two steps. Let be the
closest obstacle to a rod. While maintaining a fixed orienta-
tion, the rod moves away from until it is double equidistant
with object . In other words, it follows a path

Once the rod robot achieves double equidistance, it then moves
away from the two closest objects, while maintaining double
equidistance, until the rod attains triple equidistance to objects

, and . So, the robot follows a path

where is the projection operator and projects onto the
tangent space . Alternatively, this path can be defined as

because
.

Proposition 1: (Rod Accessibility) In a bounded environ-
ment, the rod-GVG has the accessibility property for almost all
configurations in the rod’s free space.

Proof: Without loss of generality, assume the rod lies in a
configuration that is closest to obstacle . Given that the rod
is located in a bounded space, continuity of the distance function
ensures that when the rod follows a path it
will arrive at a configuration where object is equidistant
to , i.e., .

Let . Using the results in nonsmooth
analysis [10], [20], it can be shown that

, both of which are equal to the gener-
alized gradient of projected onto . Therefore,
as long as (or ) does not
vanish, continuity of ensures that the path

will reach a configuration where
, i.e., a configuration on the

rod-GVG.
When obstacles lie in general position, there will be an iso-

lated configuration that is a local minimum of on ,
i.e., [5] for a nongeneric configuration

. In this scenario, the rod configuration needs to be slightly
perturbed in order to escape the local minimum using gradient
ascent. If the obstacles are not in general position, then there
is a connected set of configurations in that form a degen-
erate local minimum. In this scenario, the rod robot need only
to move in a fixed direction until it escapes the set of minima.

Thus far, we have defined the rod-GVG and demonstrated that
all configurations in the free space can access a configuration
on the rod-GVG. However, there is more structure and detail
to be exploited in the accessibility procedure that we can use
to demonstrate connectivity later on. We will show below that
all configurations that access the same connected component of

Fig. 11. The two clusters of solid lines represent rods whose configurations
are triply equidistant to three obstacles. The left cluster represents rods whose
configurations are elements of the rod-GVG edgeCF and the right cluster
are elements ofCF . In this example, both rod-GVG edges are diffeomorphic
toS (i.e., they are cyclic) and neither rod-GVG edge is connected to any other
rod-GVG edge.

a rod-GVG edge form a connected set. With this in mind, we
define the ajunction region , as the set of configurations
that access the rod-GVG edge . Note that neither nor

is guaranteed to be connected. The goal is to show that
each connected has an associated connected . So, we
will then show that is a retract of . This result will
be useful in demonstrating connectivity of the rod roadmap.

Lemma 1: The set of all configurations that access the same
connected component of a rod-GVG edge form a connected set.

Proof: Let and be two arbitrary configurations
that access the same connected component of a rod-GVG
edge, at configurations and . By definition, both
configurations lie in the same junction region . There is
a path from to and then to and finally to that is
fully contained in . Since and , were arbitrary, all
configurations which access the same connected component of
a rod-GVG edge form a connected set.

We are now going to develop a retraction for each con-
nected component of a junction region using the accessibility
criterion:

Corollary 1: There exists a continuous map
where describes the rod accessibility path

starting at a configuration and arriving at
.

See the Appendix for the proof of this corollary. The union of
the closure of the junction regions fills the configuration space,
but their is some ambiguity about the common boundary of ad-
jacent junction regions. For the ease of notation, assume that the
rod can access either rod-GVG edge associated with the shared
boundary of adjacent junction regions. This assumption is rea-
sonable because the boundaries of junction regions form a set
of measure zero and any slight perturbation from this set auto-
matically puts the rod in a specific junction region.

VI. THE ROD-HGVG

It was shown in [13] that the configuration rod-GVD is con-
nected. However, the rod-GVG is not necessarily connected as
can be seen in Fig. 11. In order to connect the rod-GVG, we
define additional structures, termed-edges, that link discon-
nected rod-GVG edges by exploiting the property that the point
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Fig. 12. The dark line segment on the left represents a rod configuration in
CF and the dark segment on the right represents a rod configuration in
CF . These rods are connected by the point GVG edgeF . The point GVG
edge gives rise to a linking structure termed theR-edge which connectsCF
andCF .

GVG is connected in the plane. See Fig. 12. The-edges are the
set of rod configurations that correspond to placements of the
rod that are tangent to the point-GVG edge. The point of
tangency with the rod, as described below, is “normally” one of
the rod end points, or , except when the rod passes through
the isolated point on the point-GVG edge that is a
local minimum of (or ) restricted to . In this case, the
rod “slides” through maintaining tangency with . See
Fig. 14.

In formally defining the -edges, we pay careful attention to
embedding the tangent space of the point-GVG edge into the
configuration space of the rod. Note that this requires us to in-
troduce some notation which we use to prove that the-edges
are indeed one-dimensional and yield the result that the rod is
tangent at or except at the local minimum. Next, we intro-
duce two lemmas that echo the results of [5] that connect dis-
connected point-GVG networks. Finally, in this section, we de-
scribe an algorithm for constructing the rod-HGVG. In the next
section, we discuss connectivity.

A. Definition and Dimension Count of R-Edges

Recall that the tangent space of a planar point-GVG edge
is the line orthogonal to the line segment which connects the
nearest points of the two nearest obstacles which locally define
the point GVG edge [6]. Let be the closest obstacle to a
point in the plane. In this vein, let be the vector which con-
nects and the closest point toon the closest obstacle .

We define a mapping that describes the tangent space of
a point-GVG edge at a point, so that we can embed this tangent
space into the workspace of the robot. Let be
defined as

arctangent (8)

where is measured in radians. It can be shown that
is a continuous function for convex sets [12] and thusis a
continuous function.

Let the mapping be defined as

(9)

Fig. 13. The solid lines delineate three configurations of a rod that lie in�(r).
�(r) is the angle which describes the tangent space to the point GVG edge at
the pointr.

It can easily be seen that is a continuous mapping. can
be viewed as all the rods that lie in the tangent space of a two-
equidistant surjective surface (and thus a two-equidistant face)
at a point . See Fig. 13 for an example of .

Let the -two-equidistant surjective surface defined by
and be

(10)

Since , the dimension of is two
(recall that in , the dimension of is one [5]).
may be viewed as (but is not) a tangent bundle of .

Let the -two-equidistant face be the set of configurations
equidistant to two obstacles such that(I) there exists a point,

, that is closer to obstacles and than any other point
on the rod and(II) no other obstacle is closer to the rod than the
two equidistant obstacles. In other words,

such that

and and

(11)

In , an -two-equidistant face is termed an-edge, (de-
noted ) because it is one-dimensional, as shown by the fol-
lowing proposition.

The inequalityI determines
how the rod is tangent to the point GVG edge. Let be the
point in where the distance to and is the smallest
(i.e., for all , ). For all points

, the rod is tangent to the point GVG edge at
or . Otherwise at , the rod is free to slide along the tangent
space of the point GVG edge. See Figs. 14 and 15.

Proposition 2: The -edges are one dimensional in .
Proof: Assume without loss of generality that obstacles

and have one unique pair of closest points,and . Let
the distance between these two points be . Therefore, for
all points and for all points ,

. This assumption implies that there exists a unique point,
, where and for all

other points ,
.
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Fig. 14. The rod is moving from left to right while remaining tangent to the
point GVG edge defined by obstaclesC andC . The thick solid lines represent
different configurations of the rod in anR-edge. The dotted lines represent
the shortest distance between the rod and the nearby obstacles. Note, for all
configurations where the rod isnot tangent tor the closest point on the rod to
C andC is eitherP orQ.

Fig. 15. Placements of rod along the R-edges for the environment in Fig. 10.

The proof follows in two steps. First, we show that for all con-
figurations where , there exists a unique
configuration of the rod that is tangent to the point-GVG and
that satisfies the inequalities in (11) (in fact, ).
Second, we show that the set of configurations where

forms a one-dimensional curve in .
Consider the case where . Assume the point

of contact is neither nor . By (11),
which is greater than , by hypothesis. Let the projection
of the distance gradient atonto the rod be . We
know does not vanish because , i.e.,

restricted to the rod never obtains a local minimum in its
interior because is a convex function defined on a convex set
(the rod) and all values of are greater than .

Hence, and there exists a
such that . This vio-

lates the inequality, (from (11)).
Thus, the only points for which the rod may intersect
and maintain the inequality, , is
either or . Therefore, all configurations
that satisfy the inequality, , can
be identified with or , both of
which are one-dimensional.

Now, consider the case where .
vanishes for the set of configurations where

. Thus, for all configurations of
the the rod where , there always exists a
neighborhood, , where

Fig. 16. Placements of rod along the rod-GVG whereR-edges intersect them.

for all . Therefore, all such configura-
tions can be identified with which is also one-di-
mensional.

The inequality forces the rod
to be closest to obstacles and , but does not affect the
dimensionality of the edges.

The incremental construction technique of the-edges is the
same as the incremental construction procedure for point GVG
edges (described in [6]), which is amenable to sensor-based im-
plementation. Hence, the-edges can be constructed in an in-
cremental fashion using only line of sight information.

B. Definition and Algorithm for the Rod-Hierarchical
Generalized Voronoi Graph

Definition 4: (Rod-HGVG) The rod hierarchical generalized
Voronoi graph (rod-HGVG) is the collection of rod-GVG edges
and -edges.

The following two lemmas indicate that a linking strategy
using the -edges echos the linking strategy defined by the
second order GVG for the point-GVG in higher dimensions [5].

Lemma 2: The -edges are subsets of configuration two-
equidistant faces.

Proof: Recall that for all configurations , there ex-
ists an such that and
for all points . Since

, and . Therefore for all con-
figurations , and thus for all ,

.
Lemma 3: For all configurations , the rod does not

intersect any obstacle (with the exception of pointsor lying
on the intersection of two obstacles).

Proof: By definition, for all , there exists
such that for all . Since

, for all , because we assume the rod does
not fully intersect an obstacles boundary. Thus, with perhaps
the exception of the point or , the rod does not intersect an
obstacle.

By definition of the -edges, it can be easily seen that the
terminating conditions of an -edge are either on the boundary
of the environment or when the rod is equidistant to three ob-
stacles, i.e., a point on a rod-GVG edge. See Fig. 16.

The algorithm for constructing the rod-HGVG is rather
straightforward; essentially it is a graph search of configuration
space. The robot accesses the rod-GVG from any configuration
using the accessibility criterion. It identifies the configuration
where it accessed the rod-GVG as a node and then incrementally
constructs the rod-GVG edge until it re-encounters the access
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node or a rod meet configuration. All nodes are put on a queue.
While generating the rod-GVG, the robot also marks as nodes
the configurations where -edges intersect the rod-GVG edge.
These nodes are also put on a queue. The robot then generates the
unexplored edge, either an-edge or another rod-GVG edge,
associated with the first node on the queue which is taken off the
queue when all edges emanating from the node are explored. If
new nodes, other than boundary configurations, are encountered
these nodes are placed on the queue as well. When a boundary
configuration is encountered, the robot simply terminates tracing
and goes to the next node on the queue. Exploration is complete
when there are no nodes left on the queue, i.e., all nodes have
no unexplored edges emanating from them.

VII. CONNECTIVITY OF THE ROD-HGVG

Proposition 3: Let and be two configurations of the
rod. There exists a path betweenand if and only if there
exists a path on the rod-HGVG between and
where is the function which describes the accessibility path
of the rod from an initial configuration to a configuration on the
rod-GVG.

Proof: First we show the converse of this statement. By
Proposition 1 and Corollary 1, there exists a path between
and and there exists a path betweenand . If
there exists a path from to on the rod-HGVG,
then there exists a path betweenand .

Next, we show that if there exists a path betweenand ,
then there exists a path between and on the
rod-HGVG. If and and there exists a path
between them, then there exists a series of adjacent junction
regions, through which this path passes.

The problem of connectivity is now reduced to demonstrating
that: (i) if two -edges intersect a configuration three-equidis-
tant face, , then there exists a path between the two edges
if and only if there exists a path between the two edges on
and (ii) there exists a path between two rod-GVG edges in ad-
jacent junction regions if and only if there exists an-edge that
links the two rod-GVG edges.

Lemma 4: Let be two configurations in a junction
region . and are path connected within a junction,

, if and only if and are path connected
in .

Proof: By definition, . By Proposition 1
and Corollary 1, there exists a path betweenand
and there exists a path betweenand . Therefore, if
there exists a path between and in ,
then there exists a path betweenand in .

Recall from Corollary 1 that there exists a continuous func-
tion, which describes the accessibility for the rod.

Let be a continuous function which describes a path from
to such that and . For all ,

. The image of the path between and
under is a connected path on because the

image of a connected set under a continuous mapping is a con-
nected set.

Now, it needs to be shown that the-edges connect the
rod-GVG edges in adjacent junction regions. The following

Fig. 17. Placements of rod along the rod-HGVG.

proposition guarantees that there exists a path between two
adjacent rod-GVG edges if and only if there exists a connected

-edge linking them.
Lemma 5: Let and such that and
are also on an -edge, , and are in adjacent

junctions regions. and are path connected if and only if the
-edge between them is connected.

Proof: If and lie on a connected -edge then there
exists a path between and .

If there exists a path between and , then there exists
a point based GVG edge, , which connects and

in the plane. The -edge which connects and
is the image of a connected subset of , which connects

and , under . The -edge is a connected set
because the image of a connected set under a continous function
is a connected set. Lemma 3 guarantees that all configurations
of the rod on the -edge do not intersect any other obstacle.

By Lemmas 4 and 5, if there exists a path betweenand ,
then there exists a path between and and thus
the rod-HGVG is connected.

From Section V, we demonstrated that the rod-GVG and
hence the rod-HGVG (because the rod-GVG is a subset of the
rod-HGVG) has the accessibility property and Proposition 3
ensures the rod-HGVG has the connectivity property, making
the rod-HGVG a roadmap in the classical sense. From [6], it
can be shown that at least one point from a configuration on the
rod-HGVG will be within line of sight of at least one point from
any configuration in the free space and hence the rod-HGVG
has the departability property. Therefore, the rod-HGVG is a
roadmap. See Fig. 17 for an example of a rod-HGVG.

VIII. D ISCUSSION

A. Comparison of Point-HGVG and Rod-HGVG

The rod-HGVG has inherited properties from both the planar
and three-dimensional HGVG for a point. By definition, just
like the point-GVG in , the rod-GVG is triple equidistant
to three objects because and are both three-dimen-
sional. Also, the point-GVG in and the rod-GVG are not
guaranteed to be connected and thus additional structures are
defined to connect them. In the case of the point GVG, second
order GVG edges connect the GVG whereas the-edges link
rod-GVG edges.

However, the structure of the rod-HGVG is simpler than
that of the point-HGVG because the rod-GVG does not con-
tain occluding edges. Occluding edges are structures in the
point-HGVG that represent positions where obstacles appear
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and disappear; i.e., points where obstacles become occluded or
unoccluded. Typically, occluding edges appear “on top of” or
“below” obstacles in three-dimensions. The rod-HGVG does
not have occluding edges because the rod completely lies in
the plane and hence never has to “go over” anything in order
to ensure completeness.

B. No Strong Deformation Retract

Recall that the planar point-GVD is a retract of the plane [12].
This is desirable because a retract (continuously) captures the
topology of the robot’s environment and thus for each connected
component of the free space, there is a connected retract. Un-
fortunately, three dimensional spaces populated with obstacles
in general do not have one-dimensional retracts because there
does not exist in general a function that maps the three-dimen-
sional manifold to a one-dimensional manifold that is contin-
uousandthe identity on the one-dimensional manifold. Instead,
we divided the configuration space into a cellular decomposition
where there exists a retraction in each three-dimensional cells.
The junction regions are the cells and the rod-GVG edges are
the retracts of the junction regions. We then used-edges to
link adjacent cells, thereby forming a roadmap (which is not a
retract) of .

C. Rod HGVG Depends Upon Choice of Body Frame

It is interesting to note that full gradient definition
reflects the lack of bi-invariance of all metrics in and

[21]. A left-invariantmetric in is one for which
given any two points , the distance between
these points, , is the same as for all

. This means, changing the location of the world coor-
dinate frame does not change the distance between two points
in . A right-invariant metric in is one for which
given any two two points , the distance be-
tween these points, , is the same as for
all . This means that changing the location of the
body fixed coordinate frame does not affect the distance be-
tween two points in . It was shown in [21] that no metric
in can be both left-invariant and right-variant, i.e., no
metric in can be bi-invariant. Note that the gradient in
(19) depends upon the choice of a body-fixed coordinate frame;
this reflects the lack of bi-invariance in and .

The definition of the rod-HGVG uses the gradient in (19).
This means that the rod-HGVG depends upon the choice of
the body-fixed frame. This is consistent with the configuration
space formulation [22] which also depends upon the choice
of the body-fixed frame. So, just as the configuration space
depends upon the choice of a body-fixed frame, so should a
roadmap of that space.

IX. CONCLUSION

This paper introduces a retract-like structure called therod
hierarchical generalized Voronoi graph(rod-HGVG). Using the
rod-HGVG, a planar rod-shaped robot can plan a path between
any two configurations, and . The rod-HGVG can be

viewed as a one-dimensional graph embedded in a three-dimen-
sional configuration space . Since a bulk of the motion
planning occurs on the rod-HGVG, a search algorithm between
two configurations is reduced from a three-dimensional search
to a one-dimensional one.

Since the rod-HGVG is defined in terms of work space dis-
tance measurements, it can be constructed using sensor data.
This paper provides a derivation of a distance function and its
gradient in the configuration space . Derivation of the
gradient required some care because is not a Euclidean
space. The gradient is not only a function of configuration but it
is also a function of the body-fixed coordinate frame of the rod,
which reflects the lack of bi-invariance of any metric in .

Using work space distance function and the lifted gradient
into configuration space, the robot can systematically generate
the rod-HGVG, thereby exploring the robot’s configuration
space. It is worth pointing out that the robot never explicitly
constructs the configuration space. Instead, the rod-robot
constructs a roadmap representation of it. This is important
for sensor-based planning because before it can construct
the configuration space the robot needs to know its entire
workspace which is not known a priori in exploration tasks.
Furthermore, this approach has the added benefit of saving
computational time in constructing the configuration space,
which is useful even when full knowledge of the robot’s
environment is available.

One of this method’s limitations is that it assumes there are
range sensors distributed throughout the body of the rod. Dis-
crete sensor placements should adequately approximate such a
sensor distribution, but this approximation is currently being in-
vestigated. Ultimately, we will extend this paradigm to a rod
flying around in a three-dimensional space which introduces an
order of magnitude difficulty in determining sensor placement.
Finally, there are environments where range sensor information
cannot be readily provided, so a robot must rely on visual sensor
data. Visual exploration using roadmaps is a current topic of re-
search.

Another area of future research considers the nonholonomic
constraints for the rod robot. Currently, we assume the rod
can instantaneously translate and rotate in any direction. For
a wheeled robot in cluttered workspaces, this assumption may
not be reasonable. However, it is worth pointing out that the
rod robot “appears” to move as if it has steerable wheels. Con-
sider a rod moving from the far left to the right and then up
between the two obstacles in Fig. 17. The rod first slides along
the -edge on the bottom of the figure, then approximates
a parallel park-type maneuver to rotate in place and finally
it follows the vertical -edge to move up. Future work will
demonstrate how the rod-HGVG may approximate nonholo-
nomic constraints.

This work is the next step toward the ultimate goal of sensor-
based planning for an articulated multi-body chain robot. The
roadmap result here will first be extended to a rod floating in
three dimensions. The next step will be to extend the rod result
to that of a convex body. Once a roadmap and exploration
procedure for a single convex body is accomplished, we will
attempt the two-body problem and then the-body problem
(Fig. 18).
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Fig. 18. Outline of future research.

Fig. 19. Description of the variables.

APPENDIX I

A. Rod Distance Gradient

In actuality, the rod-distance function definition also applies
to measuring distance between two convex sets. Therefore, this
section is devoted to the gradient of the distance between two
convex sets. The distance between the robot and a convex ob-
stacle is simply the distance between the pair of closest points
on the robot and obstacle. That is,

measures the distance between a convex robot and a convex ob-
stacle, where and are the set of points in that
the robot occupies. Note that this definition is identical to (1).

Assume a world coordinate frame whose axes areand
and a body fixed coordinate frame onwhose axes are and

. Let be the origin of the body fixed coordinates in the
world coordinate frame and letdenote the orientation of the
body fixed coordinate frame with respect to the world coordi-
nate frame. Let be the closest point on the obstacleto the
robot and let be the closest point on the robotto the ob-
stacle . Finally, let be in the body fixed coordinate
frame. See Fig. 19. Therefore, the world coordinates ofis

(12)

The distance is . First,
consider the partial derivative with respect to.

(13)

From (12),

(14)

Substitute the above into in (13).

Note that the vector is orthogonal to the tangent
space of the boundary of the obstacle at, as well as to the
tangent space of the boundary of the robot at. Note that

is an element in the tangent space of the
boundary of the obstacle and that

is an element in the tangent space
of the boundary of the robot. Therefore, the dot products of

with both of these vectors is zero and thus we have

(15)

Using similar analysis, we can easily conclude that

(16)

Finally, consider

(17)

From (12),

(18)
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Substitute the above into in (17) to obtain

where is described in world coordinates. That is,
Rot . Therefore, the gradient is

(19)

where is a 3 1 vector that is the gradient of a single
object distance function evaluated atand is as described
above. Note that the cross product of two planar vectors is a
scalar because the only meaningful component to the resulting
cross product vector is the “” component that sticks out of the
plane spanned by the two co-planar vectors. The cross product

of two-vectors and is often written as .

APPENDIX II
INCREMENTAL CONSTRUCTION OF THEROD-GVG

Now that we have defined the rod-GVG, we use standard
numerical construction techniques to construct it. Assume that
the rod has accessed the rod-GVG. Letbe the basis of the
tangent space of the rod-GVG edge at configurationand let

be the basis of the tangent space of at . That
is, can be viewed as a coordinate frame whose origin
is located at . Let be a parameter which represents a displace-
ment in the direction and let be the plane spanned by
and (passing through the origin defined by). This plane is
termed the “normal plane” and is orthogonal to, the tangent of
the rod-GVG. Incremental construction of the rod-GVG edge is
achieved by tracing the roots of the expression
for as the parameter varies:

(20)

Fig. 20. Sketch of continuation method.

The function assumes a zero value only on a
rod-GVG edge. Hence, if the Jacobian of , which is

(21)

is surjective, then the implicit function theorem asserts that the
roots of locally define a rod-GVG edge asis varied.
A rod-GVG edge is constructed by numerically tracing the roots
of . The explicit edge construction procedure has two steps: a
predictor step and a corrector step. The predictor step moves
the robot for a small distance along the tangent of the rod-GVG.
The tangent direction is the null space of [23]. This null
space can be computed by

Since comprises distance information, it can be readily
computed with line of sight sensor information.

Typically, the prediction step takes the robot off of a
rod-GVG edge, so a correction procedure is required to bring
the robot back to the rod-GVG. If step size along the tangent
is “small,” then the graph will intersect a “correcting plane”
(Fig. 20), which is a plane orthogonal to the tangent. The
correction step finds the location where the rod-GVG intersects
the correcting plane (Fig. 20) and is achieved via a iterative
Newton’s Method. If and are the th estimates of and

, the st iteration is defined as

(22)

where is the Jacobian of restricted to the cor-
recting plane evaluated at .

Now, it needs to be shown that:
Proposition 4: The matrix (restricted to the cor-

recting plane) is invertible.
Proof: This proof is done in two steps. First, we know

that has rank two which is a simple consequence
of transversality. Since and transversally inter-
sect, then where . Therefore,

and hence the two
rows of are linearly independent of each other.

Second, we show that the
. In fact, we show the two matrices are

in fact equal. Once this is shown, then the proposition easily
follows that , i.e.,

is invertible.
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Now, we will show that
. Let is a unit vector that is parallel

to . That is,

(23)

Then

(24)

Also,

(25)

Following similar steps, we can see that
. So . That means

the projections of in has same length. So,

(26)

where , denote the gradient with respect to ambient and
slice plane coordinates respectively.

So, in local coordinates,

(27)

So, .
Since is invertible, (22) is well posed. Practically

speaking, this result states that the numerical procedure defined
by (22) will be robust for reasonable errors in robot position,
sensor errors and numerical round off.

APPENDIX III

ROD-GVG EDGES ARERETRACTS OFJUNCTION REGIONS

In this section, we prove Corollary 1 that demonstrates that
each rod-GVG edge is a retract of a junction region. We do this
by showing that the function, or more specifically a pertur-
bation of the function, is a retraction.

Proof: Given two points and with
and a convex obstacle, let , be the closest points on

the obstacle to , respectively. Also, let and be their
respective distance to the obstacle. Without loss of generality
assume that . If , then

Fig. 21. When we rotateq to q , the distanceD (q) and the closest point on
the rodr(q ) does not change.

, which is a contradiction.
Therefore,

Also, for ’s , let and be the spheres centered onand
with radius and , respectively and be the line segment
connecting and . Consider a line segment whose end points
are on each sphere such that the segment itself does not intersect
the interior of either sphere. Since the centers of the sphere are

apart, the length of this line segment is at most .
Therefore,

(28)

Given two configuration of the rod and , let be the
configuration such that and .
Then, and . Then,

where , are closest points on the rod to the obstacle at each
configurations.

Now we consider and . Let be the vector defined
by two points and and be the vector defined
by and , the two end points of the rod at the configu-
ration . Given , if , then is
on either or . For those configurations, we can find a
rod configuration such that , and

4 (See Fig. 21) So, given and ,
let and be such configurations for each and . Then,

, so, without loss of generality, we
assume that .

Let be the radius of curvature of the wall of the obstacle at
and be the length of the rod. Then

for some constant . Then, assuming that there is no ‘flat’ wall,
for some constant and since the environment is

bounded, i.e., , for some . Thus,

where . Therefore, for any and

(29)

4c = c ; r = r
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Fig. 22. Here,r andr are the closest points on the rod at configurationsq
andq each andr is point on the rod atq corresponding tor atq . Then,
jr � r j � jr � r j+ jr � r j � L� + (�(q ) +D (q ))�.

for some constant . Then, from (28) and (29),

(30)

for some .
Now, we want to show: satisfies Lipschitz con-

dition with respect to in free space. First, for gradient
ascent from the closest obstacle,

, which is

where and . We want to
show that

for some constant (see the equation at the bottom of the
page).

Since

from (29) and (30),

for some constant . Since,

it follows that

Also, for and ,

Therefore,

for some constant .
Hence, we have the equation shown at the bottom of the

page for some constants and . Since and
for

some from the boundedness of the envitonment,

for some .
So, also satisfies Lipschitz condition, i.e.,

for some constant for any and . Therefore there exists
which satisfies above condition and also continuous on

and the initial condition, i.e., [24].
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For gradient ascent with double-, triple-equidistant, since
, or etc., it also

satisfies the condition.
At this point, we could use as our accessibility criterion and

our retraction. From here we can conclude that the is a
retraction of a junction region using . In implementation
we use , which is defined as .
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