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Abstract—Robots often have to perform manipulation tasks
in close proximity to people (Fig 1). As such, it is desirable to use
a robot arm that has limited joint torques so as to not injure
the nearby person. Unfortunately, these limited torques then
limit the payload capability of the arm. By using contact with
the environment, robots can expand their reachable workspace
that, otherwise, would be inaccessible due to exceeding actu-
ator torque limits. We adapt our recently developed INSAT
algorithm [1] to tackle the problem of torque-limited whole
arm manipulation planning through contact. INSAT requires
no prior over contact mode sequence and no initial template
or seed for trajectory optimization. INSAT achieves this by
interleaving graph search to explore the manipulator joint
configuration space with incremental trajectory optimizations
seeded by neighborhood solutions to find a dynamically feasible
trajectory through contact. We demonstrate our results on a
variety of manipulators and scenarios in simulation. We also
experimentally show our planner exploiting robot-environment
contact for the pick and place of a payload using a Kinova
Gen3 robot. In comparison to the same trajectory running
in free space, we experimentally show that the utilization of
bracing contacts reduces the overall torque required to execute
the trajectory.

I. Introduction

Collaborative robots can reduce the physiological burden
of physically demanding tasks for human operators

working in confined spaces. These robots can assist humans
by manipulating heavy payloads deep inside a confined
space. For such tasks, these long-reach robots need large
torque actuators and massive links to support its own weight
along with the payload to operate in configurations near
its maximum reach. However, such operational requirements
compromise the safety of collaboration with the human
worker at close proximity. As a result, we are faced with
a manipulation planning problem where the planner should
minimize the manipulator joint torques and accelerations
while respecting task manipulation requirements and avoid-
ing obstacles.

To overcome the conflicting requirements of safe collab-
oration and operation in deep confined spaces, it has been
shown that the robot can brace against the environment to
reduce the overall effort required to manipulate heavy objects
[2]. The physical constraints imposed by the environment
can be transformed into opportunities that can be exploited
to enable efficient manipulation that expends low energy,
increases accuracy [3], [4], and reduces compliance [5].

In this work, we present a motion planning algorithm
for manipulation that automatically discovers and exploits
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Fig. 1: An example of a hyperredundant robot manipulator lifting
a heavy tool in a confined space by leveraging contact with the
environment to assist a human worker.

bracing locations along the entire trajectory to achieve a
desired task such as transporting an overweight payload. Con-
sequently, our torque-limited manipulation planning algo-
rithm can opportunistically make/break/sustain contact with
the environment to reach deep inside a confined space with
insufficient actuator torques or carry a heavy payload beyond
the manipulator’s capability.

The summary of our contributions is as follows:
• A novel adaptation of INSAT: INterleaved Search And
Trajectory optimization [1] for the application of torque-
limited manipulation planning through contact. By inter-
leaving discrete graph-search with continuous trajectory
optimization, our algorithm is able to plan through
contact over long horizons for high-dimensional com-
plex manipulation problems in confined non-convex
environments.

• A dynamically feasible trajectory through contact can
be non-smooth with impacts and discontinuities. We
introduce a new virtual contact frictional force model
to enable planning for complex, contact-rich motions
without relying on a pre-specified contact schedule
using a gradient-based optimizer.

• To the best of our knowledge, manipulation planning
that actively reasons about effort reduction by utilizing
additional support from contact has not been proposed
and demonstrated on a real robot arm until now, which
forms the most important contribution of this work.

The key idea behind our framework is (a) to identify a low-
dimensional manifold, (b) perform a search over a grid-based
graph that discretizes this manifold, and (c) while searching
the graph, utilize contact-implicit trajectory optimization to
compute the cost of partial solutions found by the search.
As a result, the search over the lower-dimensional graph
decides what trajectory optimizations to run and with what
seeds, while the cost of the solution from the trajectory
optimization drives the search in the lower-dimensional graph
until a dynamically feasible trajectory from start to goal is
found.

This paper is structured as follows: we discuss prior work
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in Sec. II, formalize the problem statement in III and intro-
duce the tunable virtual contact models for contact-implicit
trajectory optimization in IV. We then describe our proposed
method in Sec. V. Finally, we show the experimental results
in Sec. VI, and conclude in Sec. VII.

II. Prior Work
Although the idea of bracing against the environment for

manipulation was proposed as early as the 1980s [6], not
much attention has been paid since then. Sensing and control
for bracing with probabilistic contact estimation [7] and mul-
tiple simultaneous contacts with the environment [8] were
introduced in the 2000s. The methods proposed in [9] and [2]
from the late 2010s were the first to consider manipulation
planning through bracing against the environment. However,
[2] is primarily a control algorithm to drive the robot to the
right contact point and posture and not a planner that reasons
about bracing to achieve a desired long-term task. Whereas
the idea presented in [9] is limited in that it (i) ignores
the contact dynamics (ii) only considers static environmental
bracing and (iii) is demonstrated only on a simple planar
elastomer manipulator with a single 2D obstacle.

In contrast, our planner generates trajectories with dy-
namic bracing (contact sliding); is evaluated in a much
more challenging environment; and is demonstrated on a
real robot. Planning to brace and navigating through the
environment by bracing can be construed as constrained
manipulation planning over a sub-manifold which has been
addressed by [10] and its variants. But these are quasi-static
methods that do not factor in the dynamics of contact and
manipulator system essential to understand and leverage the
effects of bracing.

Planning through contact with unspecified mode sequence
is an active challenge in robot locomotion and manipulation
[11]. The aim of the general formulation, called Contact
Implicit Trajectory Optimization (CITO), is to jointly find
trajectories for state, control input, and contact forces. Most
of the successful previous works propose different com-
binations of trajectory optimization-based approaches [12],
including direct shooting [13] and direct transcription [14],
[15]. For incorporating contact, they use either comple-
mentarity conditions with implicit time-stepping [14], [15]
or soft constraints implemented as a penalty term [16],
[17] in the cost function [18], [19]. However, standalone
optimization-based approaches are brittle when it comes to
global reasoning over long horizon and depends heavily on
the quality of initial guesses.

On the other hand, the contact mode sequence is inherently
discrete and the optimizer faces a fundamentally discrete
choice at each time, which is difficult to optimize whether
modeled using continuous constraints or integer variables. To
that end, recent approaches use graph search-based methods
[20], [21], [22] or rapidly-exploring random trees [23] to
plan contact switches and generate a seed for the subsequent
trajectory optimization. However, these local methods are
greedy and do not offer a fall-back in case the trajectory
optimization does not succeed using the discrete contact
sequence. In contrast, INSAT offers a principled way to
globally reason over the discrete and continuous parts of the
problem.

III. Problem Statement
In this work, we denote the robot manipulator as R, and
XR ⊆ R# as the configuration space (C-space) for a #

degree-of-freedom (DoF) manipulator. Let Xobs ⊂ XR be the
C-space obstacle, Xfree = XR \ Xobs be the free space and
X( ⊂ Xobs denote the surface of the obstacle with which
the robot can make and break contact. The planning state is
comprised of joint angles and joint velocities x = [q, q̇] ∈
X ⊆ R2# . The manipulator is controlled by bounded joint
torque inputs u ∈ R# . Given (a) a start state x( , (b) a goal
state x� , (c) the planning space X with the obstacles Xobs

and the obstacle contact surface X( , the task is to find a
control trajectory u(C); C ∈ [0, )] according to Eq. 1.
For torque-limited planning, the manipulator’s maximum

velocity and torque constraints must be satisfied while plan-
ning. The energy-optimal motion planning for torque limited
manipulation can be cast as the following optimization:

find u(C)
s.t. x(C) = f(x( , u(C)),

x()) = x�

x(C) ∈ (X \ Xobs) ∪ X(

| ¤x(C) | ≤ ¤xlim, | ¥x(C) | ≤ ¥xlim, |u(C) | ≤ ulim

(1)

where f denotes the manipulator dynamics with contact that
captures the interaction of R with the environment (Eq. 2).
Note that x(C) can lie on X( and hence encodes the sequence
of making and breaking contact with environment.

IV. Manipulator and Contact Model Dynamics
We model the dynamics of R and its interaction with

the environment as a rigid-multi-body system using Euler-
Lagrange mechanics with generalized coordinates q as:

M(q) ¥q + C(q, ¤q) ¤q +G(q) = 3 + J
 (q)T
 (2)
where M, C, G are mass, Coriolis and gravity matrices, 3
is the generalized input, J
 (q) is the contact Jacobian that
maps ¤q to the Cartesian velocities at the external contact
point, and 
 is the contact forces.
In this work, we use MuJoCo [24] to simulate the ma-

nipulator dynamics with contact at high-fidelity. Contact
introduces impacts and discontinuities in the system dy-
namics as the contact forces (i.e. 
 from MuJoCo) vanish
completely when not in contact and explode at the instant
of making contact. A dynamically feasible control trajec-
tory for our application might be non-smooth as the robot
has to make/break/sustain contact with the environment.
To optimize for such a trajectory using a gradient-based
solver, we introduce two tunable smooth contact models. A
smooth contact model is differentiable even at the collision
event of the contact and enables faster trajectory optimiza-
tion convergence. These models provide virtual forces that
can be exploited in trajectory optimization to overcome
the vanishing/exploding gradients of contact dynamics and
enable automatic discovery of contact locations and smooth
breaking of static friction. The vector of generalized joint
inputs 3 can be decomposed as follows:

3 = u − J� (q)
T
�(q, ¤q) (3)

where u is the joint torque input, �(q, ¤q) ∈ R#Γ and J� (q)
are respectively the generalized virtual contact forces from
the tunable smooth contact models (Eq. 4, 5, 6) in the contact
frame and the corresponding Jacobian matrix and #Γ is
number of contact pairs. �(q, ¤q) acts on the environment
in addition to the forces due to the contact mechanics from
MuJoCo (i.e. 
).
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Fig. 2: The tunable smooth (except at ¤k= (q, ¤q) = 0) contact friction
model that supplies virtual frictional force to break static friction
in trajectory optimization.

1) Tunable Smooth Contact Models: We propose two
tunable smooth contact models that supply virtual force. The
first one (Eq. 4) [17] models virtual contact normal force
�#= (q, ¤q) using a linear combination of nonlinear springs
and dampers that resists penetration into the environment.

�#= (q, ¤q) = :=4−U:k (q) + 1=sig(−U1k= (q)) ¤k= (q, ¤q) (4)

where k= (q) is the depth of penetration, ¤k= (q, ¤q) is the
relative pre-impact velocity at the point of contact, := is the
contact stiffness or spring stiffness, 1= is the contact damping
constant. Equation 5 models the virtual contact friction
coefficient `= as a function of relative impact velocity at
the point of contact (Fig. 2).

`= = ¯̀ −

��������
2 ¯̀

1 + exp
(
¤k= (q, ¤q)
U`

) − ¯̀

��������, U` =
¤kthres

;=
( d

2 ¯̀−d
) (5)

where ¯̀ = (`B + `: )/2, `B and `: are the static and kinetic
friction coefficients, `= is the virtual coefficient of friction,
¤kthres is the velocity threshold that breaks stiction and d →
0+ is a very small positive value. Then the virtual contact
frictional force � 5= (q, ¤q) is given as

� 5= (q, ¤q) = `= (�#= (q, ¤q) +
# ) (6)

Note that in Eq. 4 the normal force �#= is nonzero and
acts from a distance (i.e. k(q, ¤q) > 0) when :=, 1= ≠ 0. By
using this virtual contact force, the optimizer can discover the
contact locations to brace the robot on the environment and
offset the torque limits of the robot. Similarly, the coefficient
of friction is equal to the average of static and kinetic friction
coefficients when ¤k= (q, ¤q) = 0. And based on the model
parameter ¤kthres at which the object breaks static friction and
starts sliding, the coefficient of virtual friction is equal to the
very small value d and the frictional force from the physics
engine takes over. This enables the opposing virtual friction
to counteract the static friction from the physics engine and
automatically discover sliding between the objects.

The trajectory optimization is set up with costs on the
tunable parameters of the smooth virtual force models such
that it minimizes the deviation from strict rigid body contact
conditions (Sec. V-B). The net virtual force acting on a free
body is the sum of the virtual forces associated with the
contact candidates on that body, = ∈ {0, 1, . . . , #Γ}.

V. Torque-Limited Planning With Contact
Our planning framework interleaves graph search with

trajectory optimization to combine the benefits of former’s
ability to search non-convex spaces and solve combinatorial
parts of the problem and the latter’s ability to obtain a locally
optimal solution not constrained to discretization. We will
first describe the graph search set up in the low-D space,
and then the trajectory optimization in the full-D space that
finds the control input trajectory along with the contact model
parameters (Fig. 4). We will then explain how INSAT [1] is
adapted for the application of torque-limited manipulation
planning with contact. Finally, we provide experimental
evidence (Sec. VI) that INSAT is superior in terms of the
solution quality and the planner’s behavior than the naive
option of running them in sequence.

Consider an invertible many-to-one mapping , : X −→ X!
that projects a full dimensional state x = [q, ¤q] ∈ X into the
low-dimensional space X! . So x! = ,(x). Then ,−1 : X! −→
X is an one-to-many inverse mapping of , that lifts a low
dimensional state x! ∈ X! to any possible full-dimensional
state x ∈ X. So x = ,−1 (x!). 5x′x′′ (C) denotes a time C
parameterized full-D trajectory from ,−1 (x′

!
) to ,−1 (x′′

!
).

The argument C is dropped for brevity.

Fig. 3: Generation of contact configurations. When the low-D state
x! is expanded, the newly generated state is in collision (shown
in black with a dashed edge) with X>1B . In this work, we use the
inbuilt property of MuJoCo to naturally repel the objects in collision
to generate the first configuration x′

!
that exits from Xobs \ X( to

X( as a successor.
A. Low-Dimensional Graph Search

To plan a trajectory that respects system dynamics and
controller saturation, and simultaneously reason globally over
large non-convex environments, it is imperative to maintain
the combinatorial graph search tractable. To this end, we
consider a low-dimensional space X! (#-D) comprising of
the joint angles q. We build the low-D graph G! by dis-
cretizing the free joint configuration space of the manipulator
(X \ Xobs) ∪ X( . Each edge in the graph corresponds to
the robot’s unit joint movement by a known distance (Fig.
4). Every newly generated node is checked to not violate
joint angle limits and joint torque limits by calculating the
gravity compensation before adding to the graph. So for an
# DoF manipulator, the branching factor of the graph is
2# (unit joint movement in either direction satisfying joint
angle and static joint torque limits). The graph search can
be sped up using a heuristic ℎ(x!), an underestimate on the
cost-to-goal of the optimal trajectory. We use the Euclidean
distance between two nodes in the joint configuration space
as our heuristic ℎ(x!) =



x! − x�! 


1) Contact vs. Collision: In motion planning, the task is

to find a collision-free path from start to goal. This means
making contact or touching the obstacle is considered as
collision with the environment. However, for planning with
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Algorithm 1 INSAT
1: procedure Key(x!)
2: return 6(x!) + n ∗ ℎ(x!)
3: procedure GenerateTrajectory(x! , x′!)
4: for x′′

!
∈ �=24BC>AB(x!) do ⊲ From x(

!
to x!

5: if x′′
!
= x(

!
then

6: ,−1 (x′′
!
) = x(

7: else if x′
!
= x�

!
then

8: ,−1 (x′
!
) = x�

9: qx′′x′ = O(,−1 (x′′
!
), ,−1 (x′

!
)) ⊲ Eq. 8

10: if qx′′x′ .�B�>;;8B8>=�A44() then ⊲ Sec. V-A.1
11: qx(x′ = OF (qx(x′′ , qx′′x′) ⊲ Eq. 8 with warm-start
12: return qx(x′
13: return NULL w/ discrete ∞ cost
14: procedure Main(x( , x�)
15: x(

!
= ,(x(); ∀x! , 6(x!) = ∞; 6(x(!) = 0

16: Insert x(
!
in OPEN with Key(x(

!
)

17: while Key(x�
!
) = ∞ do ⊲ x�

!
= ,(x�)

18: x! = OPEN.?>?()
19: for x′

!
∈ (D22(x!) do

20: x′
!
= (> 5 C�>?H(s!)

21: if x′
!
∈ CLOSED then

22: x′
!
= �44?�>?H(s!); 6(x′!) = ∞

23: qx(x′ = GenerateTrajectory(x! , x′!)
24: if �C>C0; (qx(x′) < 6(x′!) then ⊲ Eq. 1
25: 6(x′

!
) = �C>C0; (qx(x′) ⊲ Eq. 1

26: Insert (x′
!
, qx(x′) in OPEN with Key(x′

!
)

contact, the planner should be allowed to collide (or make
contact) with the environment to leverage contact forces and
offset robot’s limits. To that end, we distinguish contact from
collision by defining an obstacle surface X( . The obstacle
surface is a subspace of the obstacle space such that the
distance from any point in the obstacle to the free space is
bounded by V→ 0+.

X( = {x ∈ Xobs |


x − xfree

 < V, xfree ∈ (X \ Xobs)} (7)

When generating successors in the low-D graph (Fig. 3), the
newly generated successor that is in collision is projected
out of the obstacle space by using the intrinsic property of
MuJoCo to repel intersecting rigid bodies to generate a state
that first exits Xobs \ X( . Such a state typically lies in X(
and forms the contact configuration.

B. Trajectory Optimization for Planning through Contact
The trajectory optimizer is set up to solve a boundary

value problem by finding a joint torque input trajectory
that connects the full-D subspaces ,−1 (x′

!
) and ,−1 (x′′

!
) of

two manipulator configurations x′
!

and x′′
!
. We solve this

using Successive Convexification (SCvx) [12]. SCvx solves a
sequence of smooth quadratic approximations of the original
nonlinear problem subjected to linearized dynamics. But,
as the manipulator dynamics with contact is discontinuous,
the linearization of dynamics is poor. To alleviate this, we
use the tunable soft contact model (Sec IV-.1) to solve
the trajectory optimization problem (Eq. 8). We begin with
the relaxed setting for the contact model (i.e. large values
for k = [:1, :2, . . . , :#Γ ]T, b = [11, 12, . . . , 1#Γ ]T, - =

[`1, `2, . . . , `#Γ ]T that correspond to non-zero virtual con-
tact forces when not in contact and nonzero virtual frictional
force when the object is at rest) in which the system dynamics

(manipulator dynamics + contact dynamics) and its gradients
are smooth and solve the Eq. 8 using SCvx.

min
u[.],k,b,-



x! [#] − x�! 

 + #−1∑
8=0
(‖u[8] ‖ + ‖ ¤x[8] ‖)

+
#Γ∑
==1
‖k‖ + ‖b‖ + ‖-‖

(8a)

s.t. x[0] = x0; x[8 + 1] = f(x8 , u8) (8b)
| ¤x(C) | ≤ ¤xlim; | ¥x(C) | ≤ ¥xlim; |u(C) | ≤ ulim (8c)

Note that the virtual forces disappear when k, b, - = 0
(Eq. 4, 6) and the above minimization problem optimizes
for that. Although Eq. 8 looks like direct shooting, the
variant of SCvx combines the benefit of shooting and direct
transcription by exploiting the sparsity in linear dynamics
constraint during the convexification phase and maintaining
dynamic consistency by rolling out the trajectory with the
full nonlinear dynamics using MuJoCo (see [12]).

Fig. 4: Illustration of low-D graph, full-D subspaces of low-
D states, trajectory optimization O(.) and warm-started trajectory
optimization OF (.) and iterating over low-D ancestors (line 4).

C. INSAT: INterleaved Search And Trajectory Optimization

Fig. 5: A schematic of the working principle of INSAT

An overview of the algorithm is presented using a
flowchart in Fig. 5. INSAT performs interleaved search on
discrete low-dimensional manipulator configuration space
and continuous high-dimensional joint velocity and contact
model parameter space. The low dimensional search gets the
manipulator around obstacles and evaluates various contact
mode sequences. The high-dimensional trajectory optimiza-
tion validates or invalidates the dynamic feasibility of paths
discovered by the low-dimensional search. Consequently,
INSAT generates dynamically feasible trajectories for the
manipulator to brace with the environment, offset/stay within
its torque limits, and reach the desired goal.

Alg. 1 presents the pseudocode of INSAT for torque-
limited manipulation planning with contact. The algorithm
takes as input the full-D start and goal states x( and x� .
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Fig. 6: Simulation experiments on (a) a planar arm, (b) hyper-redundant arm and (c) Kinova Gen3. In (a), the planar arm swings its
way up into the ledge. It first rolls itself into a compact configuration (a3) to minimize the net torque by minimizing the moment arm
and unfolds with the accrued momentum (a4) into the ledge. Once on the ledge, it slides its way by staying in contact and expending
least joint effort. In (b), similar behavior as (a) is exhibited but on a 9 DoF redundant system. The robot has to slide and climb the shelf
in a stretched out configuration. The robot climbs the stair without breaking contact. In (c) the Kinova Gen3 robot picks and places an
overweight object (shown in red) from a confined shelf to a table. The robot’s payload limit is 4kg and we used a 4.7kg payload. The
mass violates the static torque limits without contact support from the environment at the start configuration. The robot maintains the
contact with the shelf as much as possible by dragging the object out and swinging across its base to pump energy to eventually carry
the object on to the table. The task requires reasonably long horizon planning in which standalone trajectory optimization struggles. By
guiding the trajectory optimization with graph search over manipulator configurations, INSAT is able to produce a dynamically feasible
trajectory of unique behavior.

Fig. 7: Film strip showing a 7 DoF Kinova Gen3 robot utilizing bracing contacts to transfer a 2.5 kg payload between two cabinets using
minimal torque. The arm slides the payload all the way to the center by bracing with its wrist before lifting on its own. The payload is
then placed at the proximal end of the target shelf and pushed by bracing its forearm.

To search in the low-D graph G! , we use weighted A*
(WA*)[25] which maintains a priority queue called OPEN
that dictates the order of expansion of the states and the
termination condition based on Key(x!) value (lines 1, 17).
Alg. 1 maintains two functions: cost-to-come 6(x!) and a
heuristic ℎ(x!). 6(x!) is the cost of the current path from
the x( to x! and ℎ(x!) is an underestimate of the cost of

reaching the goal from x! . WA* initializes OPEN with x(
!

(line 16) and tracks the expanded states using another list
called CLOSED (line 21).

A graphical illustration of how the low-D state expansions
and full-D trajectory generations might look is shown in Fig
4. Each time the search expands a state x! , it removes x!
from OPEN and generates the successors as per the dis-
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cretization (lines 18-20). For every low-dimensional succes-
sor x′

!
, we solve a trajectory optimization problem described

in Sec. V-B to find a corresponding full-D trajectory from
the farthest ancestor x′′

!
of x! (line 4) to ,−1 (x′

!
) (lines

9-11, Fig 4). The trajectory optimization output qx′′x′ is
checked for collision (line 10, Sec. V-A.1). If the optimized
trajectory qx′′x′ is in collision or infeasible (Fig 4), the
algorithm continues with the next farthest ancestor (line 4).
Upon finding the state x′′

!
which enables a full-dimensional

feasible trajectory qx′′x′ , the entire trajectory from start qx(x′
is constructed by warm-starting the optimization (OF ) with
the trajectories qx(x′′ and the newly generated trajectory
qx′′x′ (line 11) by relaxing all the waypoint and derivative
constraints (Fig. 4) until convergence or trajectory becoming
infeasible, whichever occurs first.

VI. Experiments and Results
Before we present the results, we remark that our proposed

method is the first algorithm that (i) introduces global,
long horizon manipulation planning through bracing and
(ii) demonstrates it on a physical robot or realistic robot
examples in simulation. As such, we could not find a perfect
baseline for comparison that solves our exact problem. So
we used a method that is fairly common to generate smooth
trajectories for manipulation planning. Also we intend to
show the benefits of interleaving graph search and contact
implicit trajectory optimization over the common choice of
using them in sequence [20], [21], [22], [23]. To do so,
we compare our method with a sequential combination of
bi-directional RRT and direct collocation [23]. The choice
of bi-directional RRT over graph search algorithms is that
RRT variants are a popular choice for fast high-dimensional
manipulation planning. All the methods are implemented in
C++ on a 3.6GHz Intel Xeon machine.
A. Simulation Experiments

We show the results from simulation in three different
environments and robot types namely (a) a planar 5-link arm
climbing a ledge (b) a contrived hyper-redundant (9 DoF)
version of UR5 manipulator that has to enter a rectangular
tube and crawl over a step and (c) a pick and place task of
an overweight payload by Kinova Gen3 robot. Due to page
limit, we only provide qualitative analysis for (a) and (b) (see
(Fig. 6) caption). In order to minimize torque and spend the
least effort by exploiting contact, the manipulator exhibits
swinging behavior to reach the contact locations and postures
in all our simulation scenarios. Fig. 8 visualizes the planner’s
output torque trajectory for scenario (c) along with the torque
reduction ratio (TRR) [2]. TRR = (‖3wo‖ − ‖3c‖)/‖3c‖
where 3wo is the net joint torque from the baseline and 3c is
the net torque from INSAT (Eq. 3). As our baseline cannot
discover and exploit contact, the value of 3wo is higher which
explains a high TRR of 0.78. We also found that INSAT
leverages passive dynamics as much as possible. Note from
Fig. 8 that actuators 3, 5, 6 and 7 remain shut off with
zero torque throughout the slide out and swing phase and
activate only during the land phase (Fig 6). This suggests
that the planner took advantage of the passive dynamics to
effortlessly slide out of the confined shelf just using the
actuators 2 and 4.
B. Real Robot Experiments

In order to experimentally validate our method, we planned
a trajectory for a Kinova Gen 3 robot to lift a 2.5 Kg payload
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Fig. 8: Joint torque trajectory for simulation scenario (c) and
TRR calculated with respect to our baseline (Bi-RRT + direct
collocation). The torque plot for joints 2 and 4 using dotted lines
use the y-axis on the right.
between adjacent cabinets as shown in Fig. 7. The robot was
commanded in joint velocity mode using ROS Melodic on
Ubuntu 18.04. As a comparison point, the same trajectory
was executed in free space (i.e., without the cabinets). During
both experiments, the joint torque was recorded using the
Kinova Gen3’s integrated torque sensors. Table I shows the
RMS of the sensed joint torques in both experiments. From
these values, it is clear that our planner was able to utilize
bracing contacts to meaningfully reduce the torque in most
joints when compared to free-space motion.

Joint ID 1 2 3 4 5 6 7 Total

Free-
space

1.93 33.28 10.14 14.06 0.97 6.29 0.20 66.86

Bracing 4.65 23.96 6.67 11.80 1.28 5.67 0.59 54.62

Difference -2.72 9.32 3.46 2.26 -0.31 0.63 -0.40 12.24

TABLE I: Experimental RMS torques [Nm] during (i) the braced
trajectory shown in Fig. 7 and (ii) the same trajectory running
in free-space (i.e. without the cabinets) producing net savings of
12.24Nm.

VII. Conclusion & Future Directions

In this work, we presented an interleaved approach to
solving this problem with the aim of deploying it on real
robots. This is achieved by interleaving graph search with
continuous trajectory optimization. We show that planning
with torque and obstacle constraints can be achieved in a way
that finds bracing locations in the environment in order to
make an otherwise inaccessible configuration reachable due
to the torque reduction achieved by bracing. Experiments
showed that the use of bracing contacts can reduce the
required actuator torque for a given trajectory. The major
limitations of this work are the planning time (taking in
the order of 15-20 minutes for complex scenarios) and the
fidelity of the dynamics model required to assess contact
configurations for bracing. Our current work on the multi-
threaded version of INSAT is showing around 15x reduction
in planning time. Nevertheless, we believe that our algorithm
can enable realistic deployment on robotic systems that op-
erate in confined spaces. This will allow the next generation
of minimal torque actuation robots to operate safely in
deep and confined spaces for collaborative manufacturing.
While in this work we utilize a full dynamics planner, some
confined spaces may be too restricted to execute any dynamic
behavior. Therefore, in future work, we will explore the
minimum dynamic model fidelity needed for torque-limited
manipulation through contact in confined spaces.
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