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Abstract— Ultrasound scanning is an imaging technique that
aids medical professionals in diagnostics and interventional
procedures. However, a trained human-in-the-loop (HITL) with
a radiologist is required to perform the scanning procedure.
We seek to create a novel ultrasound system that can provide
imaging in the absence of a trained radiologist, say for patients
in the field who suffered injuries after a natural disaster. One
challenge of automating ultrasound scanning involves finding
the optimal area to scan and then performing the actual scan.
This task requires simultaneously maintaining contact with the
surface while moving along it to capture high quality images. In
this work, we present an automated Robotic Ultrasound System
(RUS) to tackle these challenges. Our approach introduces a
Bayesian Optimization framework to guide the probe to multi-
ple points on the unknown surface. Our proposed framework
collects the ultrasound images as well as the pose information
at every probed point to estimate regions with high vessel
density (information map) and the surface contour. Based on the
information map and the surface contour, an area of interest is
selected for scanning. Furthermore, to scan the proposed region,
a novel 6-axis hybrid force-position controller is presented
to ensure acoustic coupling. Lastly, we provide experimental
results on two different phantom models to corroborate our

approach.
I. INTRODUCTION

Ultrasonography has become an important medical imag-
ing modality especially for diagnostics and interventional
procedures because of its real-time feedback, portability
and radiation-free nature. Ultrasound imaging, thus, has
significant advantages over other techniques like Computed
Tomography (CT) or Magnetic Resonance Imaging (MRI).
Although ultrasound imaging systems have great capabilities,
there is a strong dependence on the trained professional’s
(sonographer) skill. The sonographer needs to find an appro-
priate area on the patient to scan, thus moving the ultrasound
probe within the area of interest, making subtle corrections to
the probes pose, and providing safe, significant and accurate
forces through the probe to maintain diagnosticable image
quality and prevent patient injury. Such skilled workers are
not present everywhere. Therefore, to reduce the involve-
ment of experts, the Robotic Ultrasound System (RUS) is
introduced. RUS is the fusion of a robotic system and an
ultrasound station with its scanning probe attached to the
robot end-effector as shown in Fig. 1. Robotic ultrasound
scanning also improves accuracy, stability, repeatability and
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Fig. 1: A Robotic Ultrasound System (RUS), which consists of a
6-DoF UR3e serial manipulator and an ultrasound probe mounted
to the robot end-effector.

maneuverability in terms of ultrasound image acquisition. In
recent years, a lot of research has been put into improving
the autonomy of the RUS [1]-[3], [4]-[6]. But most of these
mentioned systems are tele-operated and assistive with a
human still required to navigate the US probe to the region
of interest.

We propose an autonomous 6-DoF RUS for ultrasound
scanning without additional sensor modalities. We use
Bayesian Optimization to determine regions with high vessel
density in order to narrow down the area to be scanned,
eliminating the need to thoroughly scan the entire region.
As arteries and veins move along the body in a non-trivial
way, traditional function approximation techniques fail to
model a good approximation especially with limited number
of samples. Bayesian Optimization [7]-[9] not only helps in
estimating a function which maps points on the unknown
epidermis surface to a reward-like value but also governs
where to search on the unknown surface by balancing
between exploration and exploitation.

Once the function estimate and the surface contour (using
probed points stored) are computed, a reference trajectory
over the region with high reward values is created. This
reference trajectory is then tracked with a Spherical Linear
Interpolation (SLERP) controller and corrected at every
instance using noisy force feedback readings (similar to a
kalman filter). This approach helps in keeping a balance
between the approximated reference trajectory and force
readings to ensure proper acoustic coupling. To the best of
our knowledge, this is the first work which uses Bayesian
Optimization to estimate the vessel density on an unknown
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surface and then combines it with a 6-axis hybrid force-
position controller to perform autonomous scanning on high
vessel density region.

This paper is organized as follows: Section II describes
the background work. Section III explains the experimental
setup, the individual components of the RUS and the inte-
grated pipeline for autonomous scanning. Section IV presents
and analyses the results on multiple test subjects. Lastly,
Section V has the conclusion and future work.

II. BACKGROUND
A. Gaussian Process Regression

A common method to estimate unknown functions with
limited number of samples is Gaussian Process Regression
(GPR) [10]. GPR helps find the distribution over the space
of continuous functions, thus computing the estimate of
an unknown function along with standard deviation on the
estimate. GPR works by sampling values of the unknown
function at random points and then computing a mean func-
tion and standard deviation function which predicts the value
and confidence of the value at any given point respectively.
The mean and standard deviation computation depends on a
covariance or kernel function which computes how correlated
two inputs are. For estimating a function f : X — R, a
set {x1,x2... 2, } € X is taken, on which {y1,y2,...Ym}
are sampled where y; = f(x;) + €, ¢, ~ N(0,0). Using
these sampled points, a mean function and standard deviation
function which represents a distribution over the spaces of
continuous functions is computed as

p(z*) =K (X,z)TK(X,X) 'Y (1)
o(z*) =k(z*,2*) — K(X,2")TK(X, X) 'K (X,z*) (2)

where z* is any point in X, X = [z1,2Z2...2Tm],
Y = [y1,Y2 - .. Ym]. The matrix K depends on the covari-
ance/kernel function defined as K : X x X — R>g. A com-
monly used covariance function is the squared-exponential
function which is given as

P
w ) O

where x;,7; are the inputs, oy € R is the variance
and | € Ry is the length-scale. Large values of o imply
high uncertainty for points not sampled while large values
of [ imply large correlation between inputs having large
Euclidean distance.

K(X,z*) = [k(xy, 2*), k(z2,2%), ... k(zm.2*)] € R™ is
a vector of covariance function values between x* and X
(inputs already sampled) and

k(x1,21) k(2m, 1)
K(X,X) = : : )

k(mla xm)

k(xi,x;) =0y exp(

k(xmv xm)

is the covariance matrix € R™*™, Finally, using (1), (2), the
estimate of f is

f(@) ~ N(p(z), o(x)) (5)

B. Bayesian Optimization

In a similar vein as previous section, to find the maximum
of an unknown function which is expensive to evaluate
and lacks linearity and convexity ( a ‘black-box’ function),
Bayesian Optimization is used as mentioned in [7]. Bayesian
optimization (BO) relies on GPR to find the distribution of
the function estimate and then uses an acquisition function
to compute the next best location to sample from. Please
refer [7] to know more about various types of acquisition
functions. A common acquisition function used is Expected
Improvement (EI) which helps balance between exploration
and exploitation and is given as

) =Y N)0(2) +o(x)p(z) if o(z
El(x):{éﬂ() YH)0(2) + o (2)6(2) égﬁf

where, z = % if o(z) > 0 otherwise 0; ®(z)
and ¢(z) are the probability density function (PDF) and
cumulative density function (CDF) of normal distribution
respectively, and YT is the maximum value sampled. The

next best location is given by e, = argmax  EI(x).

C. Quaternion Interpolation

In order to find a smooth reference trajectory between two
quaternions, we use SLERP given by:

0 =2cos " (qq - q») @)

in(1 — .
SLERP(gs,qy:1) =220 DA @silr)
sin(6)

where 6 is the angle between ¢, and g, t € [0, 1] where t = 0
(at q4) and ¢t = 1 (at gp). Using SLERP, quaternions be-
tween ¢, and g, can be computed as ¢s = SLERP(qq, qb;t),
which is along the great circle arc on the surface of the unit
sphere SLERP was performed upon.

D. Robotics Ultrasound Systems (RUS)

RUS can be categorized into teleoperated, collaborative
assisting or autonomous systems. Tele-operative [1]-[3] as
well as collaborative assisting systems [4]-[6] have improved
image acquisition processes and are able to perform ul-
trasound scanning in remote areas. But these systems still
require a human-in-the loop (HITL).To minimize human in-
tervention, many methods have been explored in autonomous
ultrasound systems in recent years [11], [12], [13]. Huang et
al. [14] demonstrates autonomous scanning of the coronal
plane using an external depth sensor. The system is shown
to scan and reconstruct non-flat volumes. This method only
plans the scanning trajectory based on external surface fea-
tures, which may not be the case with many interventional
procedures. Hennersperger et al. [15] developed a RUS
that autonomously generates trajectories based on the points
selected by the physician marked in a MRI or CT scan. This
system enables autonomy but is dependent on the MRI/CT
scans which are expensive and may not be available at all
times. Merouche et al. [16] presents an automatic vessel
tracking strategy as an alternative to the teach mode, replay
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mode. The pipeline was applied to provide 3-D results of the
lower limb arteries. The system could calculate the distance
between the center of the vessel and the center element of
the probe. However, the system performance would heavily
depend upon the detection and tracking of the vessels. [17]
provides teleoperated RUS system with three modes for op-
erator: float, haptic and automatic, the automatic mode scans
along a desired trajectory recorded by human-in-loop unlike
proposed work where the desired trajectory is found using
bayesian optimization. Lastly, controlling the movement of
the US probe has been done using Reinforcement Learning
as shown in [18], [19] but but the success on new patients
not in training data is low.

III. APPROACH

Our approach develops an autonomous ultrasound scan-
ning pipeline, which involves estimating regions with high
vessel density and then using force based controller to scan
the surface. We call the estimate of vessel density on the
phantoms as information map and throughout the paper
information map and estimate of vessel density are used
synonymously.
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Fig. 2: High-level pipeline depicting the proposed autonomous
scanning framework.

SLERP based
hybrid force-
position controller,

A. Experimental setup

We use a Fukuda Denshi portable point-of-care ultrasound
scanner (POCUS), with a 5-12 MHz 2D transducer mounted
on the Universal Robot UR3e model. The experiments
were gathered on two phantoms: a) CAE Blue Phantom
anthropomorphic gel model, blue-gel shown in Fig. 3(c), and
b) CAE Blue Phantom™ Gen II Femoral Vascular Access
& Regional Anesthesia Ultrasound Training Model, leg as
shown in 3(b). The deep learning network for multi-class seg-
mentation was built using TensorFlow [20] and Python. The
information map computation using Bayesian Optimization
and the force based scanning controller were implemented in
Python. Robot Operating System (ROS) was used to combine
all of the components together and communicate with the
robot. Our work has following assumptions: a) two extreme
points are given which essentially tells the bounding-box
for our framework to operate on (note that neither depth
knowledge along the ultrasound probe is given, nor any
knowledge of the surface curvature is known apriori), b)

Fig. 3: (a) UR3e robot with the ultrasound probe mounted to the
end-effector with the respective tool-frame shown. The ultrasound
probe is applying a force normal to the epidermis surface. (b) Leg
phantom training model (/ = 410mm, w = 340mm, 4 = 100mm).
(c) Blue-gel phantom training model (! = 155mm, w = 95mm, & =
40mm).

the scan direction is known (usually along the length of the
vein/artery). Fig. 3 shows the ee (end-effector) frame which
is attached at the end of ultrasound scanner.

B. Estimation using Bayesian Optimization

The input for our Bayesian Optimization is of the form
p = (z,2) € R? and the output is reward € R which
is based on [21], we use both the mean and variance of
segmentation to compute the reward by summing the mean
value of each pixel in segmented image with a value above
a certain threshold and then de-scaling them with variance,
the threshold is chosen to be high so that all the dark pixels
are filtered out. This is done to prevent inclusion of false-
positives. We use the sum of two kernel functions a) kgg:
Squared Exponential (or radial basis function) similar to Eq.
(3) with the change that [ € R2*? is a diagonal matrix to
emphasis the anisotropic nature of the operation region and
b) kwhitenoise: White noise kernel, therefore, kit = ksg+

kwhite,noise

k}white,noise (-’171’7 -’IJ]) = {anowe lf T

0 if ©; # x;

where, ogypite € Rsg. The white noise kernel is used

to model the noise in segmentation measurements. For

the choice of acquisition function we use combination of

Expected Improvement as mentioned in Eq. (6) and also
maximum of uncertainty which is given by

9)

Prext = argmax o(p)Vp € X (10)

p
where, o(p) is from Eq. (2), and pe.¢ is the next position
to probe at.
In our experiments every fourth point is sampled from
uncertainty acquisition function while the rest from EI acqui-
sition function in Eq. (6). When a new position for probing
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is computed, the normal force and probe alignment is done
using force-feedback controller discussed in Subsection III-
C.

Lastly, hyper-parameter tuning is done to better fit
(smoothen) the estimate of information map on the limited
number of inputs sampled by maximising log-liklihood as
shown in [22]. In our case the hyper-parameters are =
[lla 12, af, Unoise]

6* = argmin — log (p(Y|X,0)) (11)
0

where, p(Y|X,6) = \/ﬁ exp(YTK~1Y), K is from Eq.

(4) and is a function of 6, X,Y are the set of position
points probed and rewards respectively, I1,ls is the length-
scale along x-axis and z-axis respectively, o is the standard
deviation of kgg and 0,5 iS the standard deviation of
kwhite_noise- We use L-BFGS algorithm [23] to optimize Eq.
an.

Following this we a) compute a linear trajectory passing
through region of high vessel density by fitting a cubic
polynomial and b) compute normals corresponding to points
in linear trajectory by computing a 3-D estimate of the
unknown surface using probed points. Note that together
the linear trajectory and normals will be called reference
trajectory (sequence of poses) for the US probe to scan along.

C. Force based ultrasound scanning

Two different controllers for scanning the surface are
discussed. One uses the surface information (known normals
to the surface as mentioned earlier) and the other uses the
force measurement to scan the surface. We further discuss
a novel method which combines the two approaches for
a robust scanning controller. The motivation of having a
consistent force along/around the normal of the surface is
to maintain proper acoustic coupling during scanning to get
useful images. At the same time it is crucial that there’s no
excess force which may affect or distort the data collected
during ultrasound scanning. Without taking care of these
conditions the segmentation performance will be disrupted.

1) SLERP based hybrid controller: Based on the refer-
ence trajectory presented in Subsection III-B, SLERP based
controller is used to track the orientations in the reference
trajectory by computing the intermediate orientations to
follow using

d(ptva)
= -c 12
" = d(po, pr) (12
_ qosin(1 —7¢) + gz sin(r)
9= sin(6y) (13)

where 6; = 2cos™!(qo-qr), d(.,.) is the Euclidean distance,
Py = {po,q0}, Pr = {pt, @} and Pr = {pr,qr} are the
starting, instantaneous and final pose of the ultrasound probe.
pe = [p¥,pf,pf] is the position and ¢; = [g, ¢F, qf, ¢7] is
the quaternion with respect to the base frame of the robot.
After computing the quaternions [qo,...Gt—1,qt,---qT]
the angular velocity is calculated in the end-effector frame

as

(14)
5)

6qr =q; " qr41
Welerp,t =quat2euler(dq,)/At

The 3 position/linear axis in the end-effector frame of the
robot is controlled using the position controller mentioned
in [24].

2) Force based hybrid controller: In this controller, force
feedback is used along all axis to control the angle made by
the probe on the unknown surface to be normal to the surface,
and to control the force exerted along the length of probe
(y-axis in probe frame) to maintain a desired contact in the
y-axis of the probe while scanning. This is done by updating
the input linear (v,) and angular velocities (wgg,;, WrE,,) tO
the robot end-effector as

vyt =— Dy(fy,t — fy,a) (16)
WFFz,t = — DT(fI‘,f - fm,d) (17)
WFFz,t = — Dz(fz,t - fz,d) (18)

where, the subscript ‘g’ implies force-feedback. D, D, and
D, are positive scalar controller gains. To match the surface
normal, the desired forces are set as f; ¢ = ON, f, 4 = 0N
and f, 4 = —8N.

3) Combined SLERP + force controller: SLERP based
controller is good at following a given orientation trajectory
but fails to adjust for abrupt changes in the orientation. Force
based orientation controller is good at adjusting for any on-
the-fly change but can be noisy. To counter cons of each
method, we combine both of them using a Kalman filter
like approach, where the SLERP based controller is part of
a trivial process model while the force feedback is part of
the measurement model based on Eq. (17), Eq. (18). The
innovation/measurement residual is given as

19)

Wt = WFF,t — Wslerp,t

The optimal gain is given as K; = (I3+R)~!, where R € R3
is the covariance of the observation noise of the force sensor
and I3 is the identity matrix. Using Eq. (19) and K, we get
the the updated angular velocity as

Wt =Wslerp,t + Koy (20)

Note that the gain K can also be kept fixed. Experiments
were tried by keeping both a fixed and varying gain. Based
on the assumptions mentioned earlier angular velocity along
y-axis is 0.

D. Autonomous RUS Pipeline

The initial point is chosen as the smaller one of the two
extreme points given where the probe samples first, after
which the given steps are followed:

1) a) The acquisition function mentioned in Subsection I1I-B
gives the location of the next point to go to.

b) After the desired contact force with the surface is
achieved, the raw ultrasound image is passed to the
segmentation network via ROS. The network segments
the vessels and calculates the reward for the image as
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Fig. 4: (a) CT-scan of blue-gel phantom overlayed with its estimate of vessel density by kinematic registration, the scan region is smaller
than the actual size of the blue-gel phantom due to width of US probe (shown as a white rectangle). (b) Estimate of vessel density
overlayed on left side of the leg phantom (! = 200mm, w = 90mm). Black-dotted line is the scanning trajectory passing along high
vessel dense region (red color) for both phantoms. Scanning is performed along black-dotted line, with black arrow showing direction of
scanning. Bottom parts of (a) and (b) sub-figures show US images when scanning along the trajectory for both the phantoms.

mentioned earlier. The particular pose along with the
obtained reward is saved in a memory buffer.

c) Based on the calculated reward, the hyper-parameters
of chosen kernels are updated Eq. (11) and the new
estimate of the unknown function is computed based on
Eq. (5). After that Step 1.a. is repeated until convergence
or maximum iteration is reached.

2)a) Based on the poses of the probed points stored in the
memory buffer and the information map, a reference
trajectory of poses across high information region is
computed.

b) Finally, the designed controller enables the US probe to
scan the region of interest. The designed controller uses
ROS to command desired trajectory to the robot using
the speedl command

Note that all the above steps are completed with zero human

intervention. A diagram of the system is given in Fig. 2.

IV. RESULTS AND ANALYSIS

The experiments are to find the region with the most
number of arteries/veins and then to scan this region using
the combined SLERP + force feedback controller to get
high-quality, densely spaced imaging of the target vessels,
which can be used to inform medical decisions and guide
clinical actions. For finding regions with high vessel density
per ultrasound image frame, we compare between different
search strategies of Bayesian optimization. In all the experi-
ments no knowledge about the phantoms is assumed except
for x, z location of extreme points. Due to the robot arm’s
limited workspace, experiments were only performed on the
left-side femoral region of the leg phantom.

A. Comparing Different Search Strategies

We compare between the following strategies: uncertainty
based on Eq. (10), EI based on Eq. (6), a mixture of EI and
uncertainty (ours) and finally randomly probing. Information

map estimates using all these strategies are shown in Fig.
5 for blue-gel phantom and in Fig. 6 for leg phantom to
provide a qualitative comparison and Table I provides a
quantitative analysis using two metrics: i) total euclidean
distance error (TEDE) between top n points with maximum
rewards and ii) zero normalised cross correlation (ZNCC)
[25]. These metrics are computed with respect to uniformly
probed estimates shown in Fig. 5(a) and Fig. 6(a), which
are treated as an approximate ground truth for respective
phantoms where red color corresponds to high vessel density
regions and the blue color corresponds to low vessel density
regions. TEDE compares how well regions with high vessel
density are detected in different search strategies with respect
to approximate ground truth, and ZNCC compares the whole
vessel density estimate of each strategy to the approximate
ground truth.

We first tried EI as our search strategy but its exploitation
strategy led to overly clustered sampling as shown in Fig.
5(c) and 6(c). The black dots represent the points probed
and the majority of them are centred about the maximum
information. On the other hand, search based on only uncer-
tainty was too exploratory as shown in Fig. 5(d), 6(d) where
the points are spread all over. Therefore, to balance both
exploitation and exploration we used a combination of EI
and uncertainty to search which is shown in Fig. 5(b), 6(b),
here every fourth point was chosen based on uncertainty.
Lastly, search was also done using a random strategy, which
did not work as well when using a limited number of points
for the leg phantom as seen in Fig. 6(e). Due to the small
size of the blue-gel phantom, almost all strategies performed
similarly when a high number of points were probed. Note
that, from Fig. 4(a) the high reward (red-colored) region
of information map estimate overlaps with the high vessel
density region from the CT-scan. The region with the most
vessels in a US frame is where one vessel is bifurcating while
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Fig. 5: Blue-gel phantom information map estimates for different
search strategies: (a) Uniform (ground truth), (b) Combined EI +
uncertainty, (c¢) EI, (d) Uncertainty, (¢) Random. Black-dots are
positions where US probe probed. Note that for uniform the number
of points were more than the other strategies.

00

Fig. 6: Leg-phantom information map estimates with the same order
of displacement as in Fig. 5

the other passes below it, thus showing 3 vessels (refer to
US images in Fig. 4(a)). The images were overlayed using
kinematics based registeration. Similarly, Fig. 4(b) shows the
scanning for the leg-phantom along high information region,
the ultrasound images show the arteries and veins along the
scan trajectory. For the leg phantom no ground truth CT-scan
was available.

Table I shows that when only 20 points are probed, the
TEDE metric gives the best performance with the mixed
strategy in both the leg phantom and blue-gel phantom.

B. Comparing Controllers

We compare the quality of the scans obtained using the
following controllers: only SLERP, only FF, and combined
SLERP + FF (ours). We estimate the quality of the US
acquired images using ZNCC. ZNCC measures the quality
of the image based on the contact between the probe and
the epidermal surface. Note that, the controller tests are only
carried on the leg phantom as the blue-gel is flat as can be
seen in Fig. 3(c).

For the given trajectory [Py, ... P, ... Pr| as shown in
Fig. 4 black-dotted line, we get a ZNCC score of 0.935,
0.933, 0.953 and 0.944 for SLERP, force-feedback (FF),
combined SLERP+FF (K; = 0.5) and combined SLERP+FF
(varying K) respectively, where K is from Eq. (20). The
upper bound of this metric is 0.993 when the robotic arm is
locked in a fixed location with constant force (thus making

TABLE I: Quantitative Comparison of Search Strategies

Experiments Leg phantom Blue-gel phantom
TEDE ZNCC TEDE ZNCC
n=20 | n=40 n=40 n=20 | n=40 n=40
Random 8.32 8.31 0.74 9.11 3.61 0.86
SD 6.67 6.82 0.91 2.99 2.96 0.83
EI 8.42 3.63 0.84 243 2.55 0.76
Modified EI | 4.22 2.25 0.834 2.51 2.32 0.84

Force in x-axes Force in y-axes Force in z-axes

*‘-1 L; 1

Fig. 7: Force profiles along x,y,z axis of different types of
controllers tested on the leg phantom. The black-dotted line shows
the desired force.

Force (N)

[
-

‘| mmmFF+ slerp(fixed K,)
[=IFF + slerp(varying K}

good contact with the unknown surface as no sweeping being
performed which can shake the probe off the normal of the
surface) and the lower bound is 0.795 when the robotic arm
force constraint is turned off thus leading to jittery contact
with the surface.

Apart from the image quality, we also need to ensure
proper force profile in all three axes. The desired forces
in each direction are f,4 = ON, f.4 = ON and f, 4 =
—8N. Fig. 7 shows the box-plot of the force in each of
the axis for each scanning method. As shown in Fig 7,
the combined SLERP + FF (varying K) strategy performs
the best with mean deviation of [0.025,0.31,0.35] and stan-
dard deviation of [0.27,0.655,0.261] in [z,y, z] on the leg
phantom. Comparatively, the SLERP and FF have much
higher mean and standard deviation, especially in the x
and z direction, because of the approximate nature of the
surface reconstruction and the noisy force sensor reading
respectively.

The results demonstrate that using our combined control
strategy can compensate for errors introduced by the approx-
imate surface reconstruction with force feedback and can
also enable smoother scanning, because it is not completely
relying on the noisy force sensor.

V. CONCLUSION AND FUTURE WORK

This paper presented a solution for an autonomous Robotic
Ultrasound System. The autonomy stack was divided in two
sections: 1) the Bayesian Optimization based information
map estimation and 2) a combined SLERP and force feed-
back based controller to scan the region with high vessel
density extracted from the information map. The pipeline was
successfully demonstrated on two medical training phantoms.
Furthermore, comparison between different search strategies
(acquisition function) for Bayesian Optimization was an-
alyzed. Our force experiments showed that the proposed
controller not only gives good quality images but also
maintains the desired force profile. For future work, we
wish to incorporate the geometry of the ultrasound probe
and include the range of forces being applied along the
length of the probe by extending Bayesian Optimization to
the space of [, z, force] from [z, z], and improving surface
reconstruction by using piece-wise estimation methods.
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