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Abstract— Ultrasound scanning is an efficient imaging modal-
ity preferred for quick medical procedures. However, due to
the lack of skilled sonographers, researchers have developed
many Robotic Ultrasound System (RUS) prototypes for various
procedures. Most of these systems have a human-in-the-loop
and require an expert to point the robot to the region of the
subject to be scanned. Only a few systems try to incorporate
some knowledge from the exterior shape of the subject for
ultrasound scanning. Accurate 3D surface reconstruction of a
patient’s exterior can enable an RUS to perceive subjects more
like a clinician would. It can help localize the subject for the
robot while eliminating input from an expert. Ultrasound scan-
ning trajectories can be better planned if the RUS first detects
critical regions on the surface of the subject and corresponding
curvatures. We use an RGB-D sensor to acquire point clouds
representing the 3D surface of the subject, which in the present
work is for a lower-torso leg phantom. A consolidated pipeline
for creating an optimized 3D surface reconstruction of a subject
is presented and is used to autonomously identify a region of
interest for scanning femoral vessels with an ultrasound probe.
To make our system more robust to inter-subject variations in
shape and size, we incorporate a trajectory optimization module
of the RUS-mounted RGB-D sensor. To this end, we introduce
a comprehensive evaluation score to quantify the quality of
point cloud reconstructions. The resulting improvements in 3D
surface scanning and reconstruction enable near-automation in
generating ultrasound scanning trajectories for femoral vessels.
Our pipeline produces ultrasound images with an average
ZNCC score of 0.86 and our 3D point cloud reconstructions
are accurate up to 1e-5 m from a ground-truth high-resolution
CT scan.

I. INTRODUCTION

Ultrasound (US) examination is an indispensable tool in
quick diagnostic and medical intervention procedures [1].
It has several advantages such as high portability, zero
ionizing radiation, and low costs which make it suitable
for emergency interventions such as Extracorporeal Mem-
brane Oxygenation (ECMO), and Resuscitative Endovascular
Balloon Occlusion (REBOA) [2], [3]. Despite its strengths,
US scanning has a strong dependence on the skills of
trained human professionals (Sonographers) [4]. Well-trained
sonographers are not present everywhere, and so a Robotic
Ultrasound System (RUS) could provide medical assistance
in such cases [4].

To get a robot to perform ultrasound scanning, we need
to replicate a wide variety of steps typically performed by
a sonographer like - (1) finding an appropriate area on the
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patient to scan, (2) moving the ultrasound probe within the
region of interest while making corrections to the probe’s
pose, and (3) providing safe and accurate forces through the
probe to maintain diagnosable image quality. In a typical
RUS, the Region of Interest (RoI) to scan is defined by input
from a skilled operator, e.g. a sonographer or doctor, based
on internal as well as superficial anatomical landmarks on
the skin [5], [6]. Identifying these landmarks requires 3D
understanding of the skin of the subject. An accurate 3D
reconstruction can also help provide normals for controlling
the ultrasound probe.

Fig. 1. Our RUS setup, similar to [1], with novelties in evaluation score
and optimization for automated US trajectory generation.

Reconstructions in the form of 3D point clouds provide
multiple features such as surface normals, curvature etc, that
can be analyzed for the above-mentioned purposes. RGB-
D sensing provides an accessible modality for capturing 3D
point cloud data and is increasingly being used in RUSs.
Having an accurate point cloud representation of the objects
present in the field of view of the sensor, can help us localize
the subject and identify based on superficial landmarks,
where to position the US probe. However, surface reconstruc-
tion pipelines usually require human input to infer RGB-
D sensor trajectories. In the case of medical applications,
this input is required from experts. Additionally, surface
reconstruction is prone to noise stemming from incorrect
sensor placement and changes in environmental factors like
lighting, sterile casings etc. Hence, elimination of human
input for automation and improvement of reconstruction
quality are both open areas in research.

In this paper, we present a novel pipeline for 3D Surface
Reconstruction with an RGB-D sensor trajectory optimiza-
tion module for automatic generation of ultrasound scanning
trajectories. We eliminate human inputs by automatically
finding the start and end scanning points for our RGB-D



sensor. Then, we optimize the height of the sensor to produce
the highest fidelity point cloud reconstruction of the subject.
Lastly, we use the identified RoI and surface normals of the
best 3D point cloud reconstruction from our optimization
to generate an ultrasound scanning trajectory. This work is
done in the context of scanning femoral vessels and we have
designed the pipeline focusing on scanning the leg region.
Our pipeline has been tested on a medical phantom and
we have achieved near automation in optimized RGB-D and
ultrasound scanning.

Our main contributions are:
• A novel 3D surface reconstruction pipeline which feeds

into automated ultrasound scanning trajectory genera-
tion.

• A comprehensive evaluation score for quantifying the
quality of reconstructed point clouds.

• An evolutionary algorithm-based real-time optimization
module that determines the best trajectory for any RGB-
D sensor for surface reconstruction.

The rest of the paper is divided as follows - Section II
discusses related work in the areas of RUS, RGB-D based
3D reconstruction, sensor position optimization, and RoI for
ultrasound scanning. Section III and IV discuss our methods,
results results. Finally, we present our conclusions and future
work in Sections V and VI.

II. RELATED WORK

In, [7], an RUS is presented with an automatic vessel
tracking strategy. The pipeline was applied to provide 3D
internal volume results of the lower limb arteries. The system
can calculate the distance between the center of the vessel
and the center element of the probe. However, the system
performance heavily depends upon the detection and tracking
of the vessels. An RUS developed by [8] autonomously
generates trajectories based on the points selected by the
physician marked in an MRI or CT scan. This system enables
autonomy but is dependent on MRI/CT scans which are
expensive and not always available. We work on improving
both these aspects.

A Kinect RGB-D sensor was used in [1] to obtain 3D
contours of a lumbar phantom. They obtain a scanning
region but are heavily reliant on experience-based rules and
physical dimensions from their system and phantom. They
also mention parameters which can be varied by the user.
Our work is different as we do not depend on the physical
dimensions of the scanning region or the RUS components
and do not require the user to fine-tune parameters.Another
RGB-D-based RUS is presented by [9] to detect sarcopenia
in legs. They perform a piece-wise curve fitting to understand
the leg surface from 8 point clouds. Their 4 DoF system
takes 12 mins to perform RGB-D scanning and curve fitting
for US probe positioning. We do not use computation-heavy
operations like curve-fitting.

For estimating the optimal trajectory of the RGB-D sensor,
there exist methods like [10], which use filtering of mul-
tiple RGB frames to optimize the trajectory. This method
along with [11] are only shown to work in simulations.

As simulations have controlled environmental factors such
as lighting, these methods could have issues transferring to
real-world experiments especially in surgical settings. Most
RUS systems depend on human operators to define the path
that the ultrasound probe should trace. [12] uses an operator
defined volume of interest. [13] presents an RUS system
to enable needle insertion that needs user defined points
on the surface to define the trajectory for maximum vessel
coverage. Some works like [4] automate RoI detection with
only ultrasound images and do not take into consideration
the exterior shape of the subject. Very few systems like
[1] automate RoI detection for ultrasound scanning using
external surface information.

III. METHODS

A. Robot Setup

Our system uses 2 sensors: an Intel Realsense D435i
RGB-D sensor and a Fukuda Denshi portable point-of-
care ultrasound scanner. Both these sensors are mounted
on a Universal Robot UR3e manipulator. The experiments
were conducted on a lower torso ultrasound training model
BPF1500-HP. See Fig. 1 for our RUS Setup. In this work,
we assume that the subject is in a supine position on a flat
surface and is in the field-of-view of the RGB-D sensor.
Our pipeline has been implemented in C++ and Python,
with functions from Point Cloud Library [14] and Robot
Operating System (ROS) [15] used to combine all of the
components.

B. Architecture Overview

Our pipeline, seen in Fig. 2, has the following modules:
1) Clustering for leg localization
2) RGB-D trajectory start and end point detection
3) Composite surface reconstruction for RGB-D data
4) Computation of an evaluation score
5) RGB-D sensor trajectory optimization
6) RoI detection and ultrasound trajectory generation

Fig. 2. Surface Reconstruction Pipeline with novel contributions high-
lighted



We first take a single RGB-D sensor reading and obtain
a point cloud of the subject, along with the base and
other objects, if any. Our clustering module finds the points
corresponding to the skin of the subject and finds an axis
to perform the RGB-D scan along. We generate a trajectory
along this axis, scan along this trajectory and compute an
evaluation score. This score is utilized by an optimizer to
find the optimized trajectory producing the highest evaluation
score. Once found, we perform one last RGB-D scan along
this trajectory and use the reconstruction from this scan to
find the RoI. The RoI and its corresponding surface normals
are then used to generate an ultrasound scanning trajectory.

C. Point Clustering for Localization of Legs

Point clustering is required to identify all points in the
point cloud corresponding to the skin of the subject being
scanned. Once the subject is positioned in the sensor field-of-
view, we position the RGB-D sensor at the highest possible
height. A single instance point cloud, representing the subject
on a relatively flat base is then captured. This point cloud
is downsampled with a 5 mm voxel size to maintain high
processing speed by reasonably reducing the data complexity.
The color-based region growing clustering algorithm [16] is
used for generating clusters from this downsampled point
cloud. We use a distance threshold value of 5, a point color
threshold value of 10 for region growing, and a region color
threshold value of 10 for merging based on [17], [18]. We
use a high point-color threshold to compensate for variations
in skin color of a single subject. This method is also agnostic
to skin tone as we do not look for a specific skin color.

We then localize the legs by finding the cluster C∗ which
corresponds to the skin of the subject. This is done by
applying a selection criteria to the clusters. Given that the
legs have higher curvature than the base and covers the
majority of field-of-view, the cluster corresponding to the
legs has both the highest average curvature and no. of points.

C∗ = argmaxi

(
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∑
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)
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∑
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where i is the index of the selected cluster,
∑

i N is the
total number of points in a cluster Ci and

∑
i κ is the sum

of curvature of the cluster Ci. There are n such clusters
to choose from. α and (1 − α) are the weights given to
the respective criteria. Based on experimental observations,
we set α = 0.5. The single instance point cloud, identified
clusters, and the selected cluster are visualized in Fig. 3.

Fig. 3. Results from color-based region growing clustering - a) Single
instance point cloud; b) Identified clusters; c) Selected cluster with selection
criteria (Eqn. 1) corresponds to the legs

D. Start and End Point Detection for RGB-D Scanning

Once the legs are localized, we generate a trajectory that
the RGB-D sensor will follow for a detailed, closer scan.
To obtain the start and end points of this trajectory, we use
the principal axis (PA) of the selected cluster. For this, we
flatten the selected cluster point cloud from the previous
module along the z axis and find the 2D convex hull for
the flattened point cloud. A covariance matrix is computed
for the flattened point cloud and the eigen vectors for this
matrix are computed. The largest eigen vector corresponds
to the direction of the PA. We extend the PA vector in both
directions from the centroid of the flattened point cloud.
The intersection points of the PA with the edges of the 2D
convex hull are found. The (x, y) coordinates of these points
form the coordinates of start and end points of the RGB-D
scanning trajectory. The points are visualized in Fig. 4. The z
coordinates (height) of the start and end points are obtained
from the optimization module.

Fig. 4. Steps in start and end point detection - a) Selected cluster point
cloud along with the centroid, principal axis (red) and 2D convex hull
(green); b) Detected start and end points for RGB-D scanning trajectory
along the PA.

E. Composite Surface Reconstruction

This module discusses the steps for processing frame-wise
point clouds and generating a composite surface reconstruc-
tion for every RGB-D scanning trajectory.

The RGB-D sensor was calibrated by obtaining accurate
transforms from the sensor optical frame to the robot base
frame using an extensive CAD model of the system. Frame-
wise point clouds from the RGB-D sensor are read and
transformed from the sensor frame to the robot base frame
using parameters from the sensor calibration. Once in the
base frame, they are stitched together as the sensor moves
and newer points are read. This stitched point cloud is the
composite point cloud from a given scan trajectory and is
clustered again to obtain the cluster corresponding to the
legs of the subject. This cluster point cloud, and the larger
composite point cloud are used for the remaining pipeline.

F. Evaluation Score Computation

We have identified certain metrics to quantify the quality
of the surface point cloud. In this module, we compute a
score based on these metrics for evaluating the quality of
the surface reconstruction and use this score to optimize the
RGB-D scanning trajectory. The metrics are:

1) Ratio of Inliers: The quality of point clouds is de-
pendent on the presence of outliers. Outliers signify regions
that were not reconstructed properly, whereas the remaining
points (inliers) signify well reconstructed regions. For quan-
tifying the quality of our point cloud, we use Metric1 where



Metric1 =
No. of inlier points
Total No. of points

(2)

in the evaluation score. Outliers are detected by the appli-
cation of the statistical outlier detection algorithm [19] to
the selected cluster. We consider 50 nearest neighbours and
a standard deviation of 0.75 for our implementation based
on [20], tweaking for more aggressive outlier removal. The
inliers are visualized in Fig. 5. Additionally, we consider the
points above and below the surface that are removed during
clustering to be outliers as well while determining Metric1.

Fig. 5. (Left) Top view of the cluster point cloud, (Right) Computed inliers
highlighted in red.

2) Ratio of Continuous Area to Total Area: Different
regions on the scanning subject could be reconstructed with
different point densities. While most regions have uniform
point density and are continuous, some regions lack points
altogether and form hole-like regions on the surface resulting
in concavities, as seen in Fig. 6.

Fig. 6. Top and side view of a cluster point cloud with a concavity.

To quantify our surface reconstruction as a function of
continuous regions, we use the ratio of continuous area to
the total area of the reconstruction. We obtain the continuous
2D projected area of the cluster point cloud by discounting
discontinuous cavity regions and divide this by the total 2D
projected area of the cluster point cloud (Eqn. 3). We obtain
these quantities by computing the area of the concave (with
alpha shapes) and convex hulls after 2D projection.

Metric2 =
Area of 2D Concave Hull
Area of 2D Convex Hull

(3)

3) Normalized Standard Deviation of Neighborhood Nor-
mals: Distortions present in reconstructions, especially when
the sensor is too far from the subject, produce inconsistent
surface normals which signify poor reconstructions. This
characteristic needs to be penalized in the trajectory opti-
mization. We quantify this by calculating the normalized
standard deviation in surface normals for sample points
in the cluster point cloud. t points are selected on the
cluster using the farthest point sampling [21]. For each of
these sampled points, we select k-neighbouring points and
calculate variance (V ar) of the surface normals in terms of
the angle between them for each of these clusters. The final

TABLE I
CYLINDER RADII, OPTIMIZED HEIGHT AND EVALUATION SCORES

Radius of
Cylinder

(cm)

Optimal
Height
(cm)

Evaluation Score
at Optimal

Height

Evaluation Score
at height
26.5 cm

4.5 25.28 0.5794 0.5457
5.5 23.48 0.5338 0.4947
8 30.52 0.5448 0.5313

metric, which is the normalized standard deviation of all the
chosen normals is given by

Metric3 =

√ ∑
t V ar(cos−1(ni.nj)t)∑

t Mean(cos−1(ni.nj)t)
(4)

where ni and nj are the two neighbouring normals on the
surface at tth point selected using farthest point sampling.
For our experiments t = 50 and k = 20. Finally,
EvaluationScore = β1Metric1+β2Metric2−β3Metric3 (5)

Here, each metric is weighted equally at 0.33 as reweighting
could disproportionately skew the values of the metrics as
they have large variances due to outliers.

G. RGB-D Scanning Trajectory Optimization

1) Motivation: We hypothesized that inter-subject varia-
tions in shape and size require changes in RGB-D sensor
positioning for good 3D reconstructions. We performed a
simple experiment to test this hypothesis. Considering an
over-simplified geometric primitive for a leg, we use cylin-
ders of different radii, color and lengths, and perform RGB-D
scans using trajectories with constant heights. The results in
Table I, show different optimal heights obtained by using the
evaluation score defined in III-F. We observe that the optimal
height differs with different radii and the data confirms
our hypothesis. We observe that the evaluation score is
significantly lower at a close-to-mean height for all the three
cylinders than their optimal height. Additionally, there exists
no linear relationship between the radius of the cylinder and
the optimal height. This non-linear relationship between scan
quality and distance of sensor from object is documented in
[22] and holds true for multiple RGB-D sensors. This further
motivates sensor-agnostic scanning trajectory optimization.
Even if this non-linear relationship was to be estimated for
cylinders, there is very low probability that it would hold to
varying human anatomies with differing curvatures. This jus-
tifies a per-subject RGB-D scanning trajectory optimization.
Further, we test varying heights for our RGB-D scanning
trajectories as we expect the lower torso and the upper leg
region to be uneven in curvature.

For the trajectory optimization module, the orientation of
sensor is always anti-parallel to the flat surface on which the
subject is kept as shown in Fig. 1. The initial and the final
poses of the sensor come from the method in Sec. III-B as
Xi and Xf . The trajectory is discretized into n segments.
Intermediate poses of the start of each segment are given by,

Xn = nλXi + (1− nλ)Xf

zn = a0 + a1sin(k1nλ) + a2sin(k2nλ)

+ a3cos(k1nλ) + a4cos(k2nλ)

(6)



where X = [x, y]T . a0−4 are the coefficients of the param-
eterized equation. k1 = 1 and k2 = 2 are the frequencies
of the sin and cos functions. nλ represents the nth segment.
2ndand 3rd order polynomials for zn in terms Xn made the
coefficients vary in multiple orders of magnitude, making
the state space for the optimization very large. We therefore
choose the Fourier basis function [23] and represent zn
independent of Xn. We optimize using the Cross Entropy
Maximization (CEM) optimizer [24], an evolutionary algo-
rithm, to find the optimized values for a0−4. For every epoch
of optimization, we run through the steps 3-5 in Sec III for
every agent. Based on the evaluation score calculated, the
optimizer selects few best agents and updates the mean and
variance of each of the coefficients. We use Nagents = 10,
Nbest = 3, Nepochs = 7.

H. RoI Detection and US Trajectory Generation

The optimized reconstructed surface point cloud is used
for RoI detection. We look to start at the inguinal fold and
scan along and the inner regions of the leg bifurcation along
the left leg (highlighted in Fig. 7). The boundary of this RoI
is used to generate a US scanning trajectory.

Fig. 7. Leg cluster with detected RoI in purple and US trajectory in green.

To obtain the RoI defined above, we threshold the cluster
point cloud from the final optimized RGB-D scan based
on curvature. We use the average curvature of the cluster
point cloud and retain only points with curvature above this
threshold as part of the RoI. We then find 7 points along the
boundary of the RoI on the left leg using the principal axis
and use these points to define poses of the US trajectory.
We use the hybrid force position controller + SLERP from
the work [4] to scan the leg along these trajectory points.
The required surface normals for SLERP computation are
calculated by applying [25] to the optimized reconstruction.

IV. EXPERIMENTS AND RESULTS

A. Clustering

We test the robustness of the color-based region growing
clustering to our application by applying it to the phantom
with occlusions on the skin and with multiple objects on
the base, near the leg, to replicate real-life medical and
surgical scenarios. We provide visual and qualitative results
of the clustering performance in Fig. 8. We observe that
smaller occlusions, such as clear tubes, needles, catheters
etc. are not detected separately and are considered as part of
the skin of the subject. This is perhaps due to their small
size and/or translucent nature. These occlusions could be
considered as part of the scanning surface and be included
in RoI and US trajectory generation. This can lead to
discontinuous US scans. However, a big positive is the fact
that other larger occlusions such as surgical cloth, gloved
hands and blood/wounds are identified as not being a part

of the subject’s skin and excluded from the pipeline for RoI
detection and US trajectory generation.

Fig. 8. Multiple scenarios with occlusions on the leg phantom and presented
reconstructions with selected leg clusters.

B. RGB-D Trajectory Optimization

Our trajectory optimizer converges after the 7th epoch
and attains a maximum evaluation score of 0.55. We con-
sider the optimizer to have converged when the maximum
standard deviation of the past 5 epochs is below 1.2 ∗
standard deviation of last epoch. We check this criterion for
the last 6 epochs of our optimization loop.

Each epoch for scanning the whole region takes 2.5 mins
for completion. The plot in Fig. 9 shows the evaluation score
along with its standard deviation at each of the epochs. 9 a.
shows the rise in evaluation scores with epochs. The standard
deviation in evaluation score reduces drastically post epoch
5. It is observed that the height of the optimized RGB-D
scanning trajectory is in the range ∼ 0.22 - 0.24 m when the
minimum and the maximum heights possible are 0.17 and
0.35 m respectively. We also show the 3D reconstructions
generated at epochs 0, 3 and 7 in Fig. 10 demonstrating
the improvement in point clouds as we reach an optimized
RGB-D scanning trajectory.

Fig. 9. Evaluation score vs epochs for the optimization loop a) with all three
metrics; b) without Metric1; c) without Metric2; d) without Metric3;
in the evaluation score. The scores in b, c, d are scaled to [0, 1] for equal
comparison.



We also performed an ablation study to find the effect
of each of the metrics on the evaluation score. We plot the
results in Fig. 9 b, c and d. Each metric is important in
the evaluation score. Graph b. shows a converging evaluation
score with low standard deviation showing that the evaluation
score is stable without Metric1. However, there is no clear
distinction in evaluation scores over time. This shows that
Metric1 is a clear distinguishing factor and and is needed
in our evaluation score. Graph c. shows that the evaluation
score is unstable without Metric2 as we see varying standard
deviations. This signifies that Metric2 is required in the
evaluation score calculation. We observe that the evaluation
score without Metric3, as seen in graph d. is similar to
graph a, marking a lower sensitivity of the evaluation score
to Metric3. This is perhaps due to the skewed penalization
in Metric3. However, convergence without Metric3 still
takes longer and is seen at Epoch 9.

The reconstructed point cloud from the optimized scan is
overlaid onto a ground truth point cloud generated from a CT
(Computed Tomography) scan of the phantom. We obtained
a Chamfer distance CD = 5e-5 m between the two.

Fig. 10. Improvement in reconstructions within the optimization loop.

C. Ultrasound Scanning

Fig. 11. a) RoI based US trajectory overlaid on the reconstructed surface;
b) and c) Femoral vessels captured by generated US trajectory (blue)

The US trajectory generated from the RoI is used to drive
the US probe over the subject. The US images collected are
tested for quality. The trajectory as well as the ultrasound
images are shown in Fig 11. Higher image similarity implies
higher consistency in US imaging which implies smoother
scan. We use the zero-normalized cross correlation (ZNCC)
score [26] as a metric to quantify this consistency as a quality
measure for US scanning [4]. A ZNCC score of 1 represents
a perfect scan. The quality of the scan is a direct function

of the estimated surface normals which in turn is a function
of the reconstructed surface. From the Table II, we see that
the ultrasound images collected from the optimized RGB-D
scan produce the best ZNCC score compared to the other two
RGB-D scans taken at the minimum and maximum constant
heights h = 0.17m and h = 0.35m. We also present a score
from a non-expert user, who was introduced to our setup
but had knowledge about the general location of femoral
vessels. The femoral vessels are visible in 85% of the US
frames captured from our generated trajectory as compared
to 70% of the US frames captured from the non-expert
defined trajectory. We provide this comparison as we aim for
applicability in scenarios where experts are not available.

TABLE II
ZNCC SCORE COMPARISON FOR VARIOUS TRAJECTORIES

US Trajectory From ZNCC score of US images
Optimized RGB-D trajectory 0.861

Constant h=17cm RGB-D 0.838
Constant h=35cm RGB-D 0.835

Non-expert 0.791

V. CONCLUSION

Our pipeline successfully localizes legs of a subject and
runs a trajectory optimization module for accurate and op-
timized RGB-D scanning. This provides us with good RoIs
on the surface for US scanning. In Section IV, we show that
color-based region growing for clustering performs reason-
ably well in detecting the skin of the subject. Additionally,
our evaluation score comprehensively identifies good features
in reconstructed point clouds while penalizing bad ones in
the optimization process. This helps our RGB-D trajectory
optimization module converge the fastest (corroborated by
the ablation study). Finally, the RoI detected traces the
femoral vessels fairly well while producing good quality
US images. We have achieved near autonomy in ultrasound
scanning using RGB-D sensing.

VI. DISCUSSION AND FUTURE WORK

Our pipeline ties external anatomy to internal scanning
and is an important step in the complete automation of an
RUS for scanning femoral vessels. Since our optimization is
not contingent on camera parameters, our method is sensor
agnostic and can be applied to other RGB-D sensors. In
∼15 mins, we can determine an optimal trajectory for RGB-
D scanning of legs. While this takes longer than placing
the sensor at a few optimal poses and stitching captured
point clouds for obtaining a high fidelity 3D reconstruction,
the latter is highly subject to the skill of the operator. Our
method adds autonomy without assuming any knowledge of
the RGB-D sensor or the dimensions of the subject.

To test the generalization of our pipeline to real-world
scenarios, live-pig experiments are planned. We plan to
optimize the RGB-D sensor orientation in addition to the
height. This can provide a higher area coverage of the
subject’s skin. Currently, our pipeline generates a US RoI
based on the external surface only. To increase the visibility
percentage of the femoral vessels, we plan on incorporating
knowledge of internal anatomy.
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