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ABSTRACT

The “self-recovery” phenomenon is a seemingly curious
property of certain underactuated dissipative systems in which
dissipative forces always push the system to a pre-determined
equilibrium state dependent on the initial conditions. The sys-
tems for which this has been studied are Abelian, with all system
velocity interactions due entirely to inertial effects. In this paper
we also consider Abelian systems, but in the context of principal
bundles, and introduce drag in addition to inertial interactions,
allowing us to show that the same conservation that induces self-
recovery now depends on the trajectories of the system inputs in
addition to initial conditions. We conclude by demonstrating an
example illustrating the conditions derived from our proof, along
with an observation that the present analysis is insufficient for
self-recovery in non-Abelian systems.

INTRODUCTION

Consider Fig. 1, in which an elliptical puck with an internal
mass slides on the plane while experiencing viscous friction. The
internal mass can be actuated along the semimajor axis of the
puck. If it is actuated to the right for example, and the puck is at
rest, then momentum conservation dictates that the puck move to
the left, which induces a drag force due to friction opposing the
puck’s movement. Surprisingly, no matter how fast the internal
mass is moved or where it stops, the drag force will always push
the puck back to where it started after actuation ceases.

This phenomenon, documented as damping-induced self-
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FIGURE 1: A puck sliding on a plane as a result of actuation that
moves an internal mass relative to the puck.

recovery by [1,2], entails the addition of dissipation to systems
exhibiting symmetries in the sense that the Lagrangian is invari-
ant under the tangent lift of a Lie group action on the system’s
configuration manifold. In every case documented, the group ac-
tion has been Abelian and the dissipation has been applied as a
force that is linear in velocity and resists translation along the
orbit of the group action. However, this dissipation was not nec-
essarily required to exhibit the same group symmetries as those
of the Lagrangian in the previous work.

In this paper we examine self-recovery in the context of a
general class of mechanical systems that admit a particular geo-
metric formalism, and we derive the conditions for self-recovery
when the symmetry is Abelian. The systems we consider involve
dissipation derived from a Rayleigh dissipation function that is
invariant under the same lifted group action that defines the sys-
tem’s symmetry. Practically, this class of systems will also in-
clude those in which the local Stokes connection form, which
describes system velocity interactions due to drag forces, is not
necessarily zero.
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DISSIPATIVE SYSTEMS WITH SYMMETRY

The variables that specify the configuration of a mechanical
system frequently admit a decomposition whereby a certain sub-
set of variables collectively represents an element of a Lie group
G. For a mobile robot, certain variables specify the robot’s in-
ternal configuration while the remainder collectively specify an
element of SE(3)—or some subgroup thereof—that encodes the
robot’s position and orientation relative to a laboratory frame of
reference. The robot’s internal configuration can be regarded as a
point on a manifold M and the system’s overall configuration can
be regarded as a point on the configuration manifold Q =M x G.

For a decomposition in this form, it can be insightful to re-
gard Q as a principal bundle with structure group G and base M,
particularly when some property of the system—typically, the
Lagrangian—is invariant under translation in the group G. A
system that exhibits invariance of this kind is said to exhibit a
symmetry. A fundamental construction in modeling the dynam-
ics of a system exhibiting a symmetry is that of a connection on
the bundle Q = M x G. This perspective is developed in detail
in [3-5] and summarized below.

Consider a mobile robot with configuration manifold Q =
M x G for which motion in M is directly actuated but motion in
G is not, so that self-propulsion of the robot relies on the cou-
pling of changes in its internal shape to changes in its position
and orientation. In general, this coupling is dictated by a set of
equations that invoke a pair of connections. A single connection
is sufficient when the system’s group velocity is a linear function
of its shape velocity at each point in Q, provided that this func-
tion varies within Q in a specific manner as explained below.
Note that a system modeled by a single connection is necessarily
driftless, as motion in G requires concurrent motion in M.

The velocity with which a robot moves through its environ-
ment may be written as a vector ¢ € T,G tangent to G at the
robot’s current position and orientation g € G. If g is defined
such that the robot is collocated with the laboratory frame of ref-
erence, then its position and orientation correspond to the iden-
tity element e € G, and ¢ € T,G may be thought of as an element
of the Lie algebra g. Indeed, relative to a time-varying frame de-
fined so that it always coincides with the robot’s instantaneous
position and orientation—a body frame—the robot’s group ve-
locity can always be regarded as an element of g.

A connection on the principal bundle Q = M X G may be
specified by a Lie algebra—valued one form A : TM — g called a
local connection form. The local connection form maps a tangent
vector on M—a shape velocity—to a Lie algebra element. This
Lie algebra element may then be equated with a group velocity
¢ in the manner described in the preceding paragraph. Note that
we assume A to be independent of g: the linear map from a shape
velocity in M to a body velocity in g depends on the configuration
q € Q only through the internal configuration r € M, while it is
independent of the group variables.

The system in Fig. 1, for instance, admits a model based

on a single connection when friction between the puck and the
ground is absent. If the system begins at rest, its initial transla-
tional momentum will be zero and will remain zero regardless
of actuation. If actuation moves the internal mass to the left, the
puck will move to the right, stopping as soon as the actuation is
discontinued. The puck’s body velocity, furthermore, is propor-
tional to the velocity of the mass relative to the puck in a manner
independent of the puck’s absolute position.

Since the behavior of the system in Fig. 1 is dictated by
the conservation of momentum, its connection is called a me-
chanical connection and the local connection form is denoted
Amech : TM — g. When a system is governed by a connection
that represents not the conservation of momentum but a balance
of viscous forces derived from the velocity gradient of a Rayleigh
dissipation function—as dictates, for instance, aquatic locomo-
tion at the extreme of low Reynolds number—the connection is
instead called a Stokes connection and the local connection form
is denoted Agiokes : TM — g. The latter terminology was intro-
duced in [4].

In general, if the configuration manifold for a mechanical
system admits the decomposition Q = M X G, if the system’s be-
havior is governed by Lagrange’s equations subject to general-
ized dissipative forces derived from a Rayleigh dissipation func-
tion, and if the Lagrangian and the Rayleigh dissipation function
can be written as functions of the body velocity rather than the
group velocity g, then the equations of motion for the system
may be written in the form

g = TeLg (_Amechi"kli1 p)

. . - . ey
p=V (AStokes —Amech) 7+ VI 1 p+ ad(TeLg)*lg‘p'

Here the velocity 7 € T.M in the space of controlled variables
represents a control input, acted upon by Apyech and Aggokes tO re-
turn Lie algebra—valued body velocities. The local locked inertia
tensor I : g — g*, maps a body velocity into the corresponding
momentum relative to the body frame. The local viscosity ten-
sor'V : g — g* maps a body velocity into a viscous force and/or
moment (depending on the group G) relative to the body frame.
These two tensors may depend on r but not on g, reflecting the
symmetries of the Lagrangian and the dissipation function. The
symbol L denotes left translation in G, so that the body velocity
associated with the group velocity ¢ is given by (TeLg)*1 8.

The first line in (1) defines the momentum p; the second line
frames the dynamics of p in terms of the quantities described
above. The symbol ad* denotes the transpose of the Lie bracket
on g relative to the natural pairing of g with g*. Our primary
concern in the present paper is systems for which G is Abelian;
in this case the ad* vanishes from (1).

It is straightforward to verify that if dissipation were re-
moved from a system governed by (1) (V — 0), and if the system
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is initially at rest (p = O initially), then (1) simplifies to
(TeLg)ilg' +Amech7" = O,

and the mechanical connection provides the linear map from the
velocity 7 to the body velocity (T,Lg)~'¢. On the other hand, if
the tensor IV ! : g* — g* representing the influence of inertial
effects relative to viscous effects is prepended to the second line
of (1) and allowed to go to zero, (1) can be simplified to

(T.Lg) ™' é + Astokes’ = 0,

and the Stokes connection provides this linear map.

Although it is less relevant to the present paper, we also note
that if dissipation is removed from the system and there is no
motion in the base manifold, so that V = 0 and 7 = 0, then the
second line in (1) simplifies to the Lie-Poisson equation

*

p = ad(TeLg)—lgp

in rigid-body dynamics, ideal fluid mechanics, and elsewhere [6].

SELF-RECOVERY FOR ABELIAN SYSTEMS

We now establish conditions under which a system governed
by (1) will exhibit dissipation-induced self-recovery. We first
assume G to be Abelian, so that (1) simplifies to

g§= _Amechf'i‘lilp

2
P =V (Astokes — Amech) 7+ vi! p.

This is the form of the equations governing the system in Fig. 1,
for which r =&, g = x, and

. m .
Amechlé’—)mé Ix»—)(M-l—m)x (3)

Astokes : €+ 0 Vi i —bi,

where b is a linear drag coefficient. Note that from the first line of
(2) we can derive p = Mx+m(x+ &), the total linear momentum.

Here we will only consider the case in which V is a constant
mapping on g; namely, the drag force depends only on the group
velocity and not the internal configuration of the system. For the
system in Fig. 1, this is the 1 x 1 matrix containing the element
—b. In addition, we take I to be positive definite and V to be neg-
ative definite as proper inertia and viscosity tensors, respectively.
We do not assume that all vectors tangent to M lie in the kernel

of Agiokess as is the case in (3) and in the other explicit examples
appearing in the literature to date.

We first combine the two equations in (2) to eliminate p and
obtain a second-order differential equation in g and r:

d . . ) )
E(Ig +1Amechr) — Vg —VAskesi = 0. 4)

In the same manner as that of [1, 2], this gives rise to the follow-
ing conserved vector quantity (an integral of the system):

r(t)
W= 1¢ + TAmeani—Vg —V / Astokes dr 5)
N—— o
V4

We assume that Agokes 1S bounded such that its integral is defined
in the time interval of interest. One can easily show that p is
conserved by taking its time derivative, which yields (4). If the
system has an initial configuration (g, po), then we can evaluate
the value of i to be 4 = po —Vgo.

Now self-recovery only occurs after actuation is ceased, i.e.,
lim; 7 = 0. After sufficient time, the connections no longer
play a role in governing the system’s motion. Let lim; o 7 = ry.
Applying these stipulations and rearranging (5), we obtain the
simplified first-order dynamics of g:

_ 'f
g:I<rf) 1(V8+V/ AStokesdr+ﬂ)
o

=1I(rp)"'V(g—go) +1(ry)"" (v / " Asres dr + po> . (6)
o

The right-hand side of (6) is an affine function in g with a
unique zero, as both 7 and V are invertible. Due to negative defi-
niteness of V, g will exponentially decay to this zero. In general,
we can use this to explicitly find the final configuration of the sys-
tem without integration of the group variables. For self-recovery,
we desire lim;_,.. g¢ = go, which occurs when

rf
V [ Asesdr+ po =0. ™
1o

Physically, this means that the net momentum gained due to the
mapping of the Stokes connection on shape inputs exactly can-
cels out the initial momentum pg. Note that this formulation
allows for partial recovery in some of the group variables, if only
some of the rows of Agoes satisfy (7).

A SYSTEM WITH A NONZERO STOKES CONNECTION
From (7), it is clear that the system in (3) exhibits self-
recovery if po = 0. As an example of a system with nonzero
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(a) Trajectories for the left leg. (b) Trajectories for the right leg. (c) Corresponding robot position trajectories.

FIGURE 3: Demonstration of damping-induced self-recovery for three different sets of shape inputs.
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FIGURE 2: A bipedal robot that can translate laterally by actuat-
ing two internal variables A and p specifying leg positions.

Astokes, consider the bipedal robot shown in Fig. 2. It is reminis-
cent of the inchworm in [3,4], for which V was nonzero, and the
quadrupedal walker in [5], for which the system was not Abelian.

The robot’s weight is supported by rigid legs, which both
remain in contact with the ground but can move toward or away
from the robot’s body. The robot’s center of mass remains at
the body axis so that it can avoid falling over, and the extent to
which one foot or the other provides support varies with the legs’
configuration. This in turn influences the extent to which the foot
sliding along the ground experiences friction.

Denote the robot’s lateral position and momentum by x and
p, respectively, and let the two shape variables r = (4, p), both
nonnegative, describe its leg configuration as shown in Fig. 2.
We model friction as a linear function of the system’s velocity
with proportionality constant b. The equations of motion are

x=p/m
b ; 3
)= —bx — ——(Ap — pA).
p 2 7L+p( p—pA)
From these we can extract
Amech : F—0 I:%+— mx
Ap—pA ©))
AStokes:fH% V :x— —bx.

Now because Agokes 1S not null, self-recovery will occur
only if the shape inputs satisfy (7). In the following simulations,
we use m = 1 and b = 1. In addition, suppose we start from rest
so that pg = 0; we thus require that f,ﬁ)f Asiokes dr = 0. Note that
shape trajectories where A(¢) = p(¢) lie in the kernel of Agokes;
physically, the drag forces on either foot cancel each other out
and the system does not actually translate.

Suppose we pose the problem as follows: Given an initial
configuration ry and final configuration r, find shape inputs sat-
isfying these boundary conditions such that the robot does not
have net movement from its initial position, i.e., xy = xp. Along
with functional form and time constraints, this can be posed as
an optimal control problem. As this is beyond the scope of the
present paper, we will restrict analysis to several experimentally
determined smooth and monotonic functions.

Figures 3a and 3b show three sets of shape inputs. In the
first scenario, we would like to increase A; from 1 to 3 without
effecting a net change in p;. One solution would be to initially
decrease p;, moving the right leg to the left, followed by a more
gradual restoration to its original position to nullify the gained
momentum. As shown in Fig. 3¢, damping pushes x; (¢) back to
the origin even after the legs stop moving at7 = 7.

The second input set has both legs starting from different po-
sitions and moving outward to an equal leg placement, with A,
acquiring a larger net gain. With the third set of inputs, A3 and p3
start out symmetrically, but A3 increases more than p3. In both
cases, we start actuation of both shape variables at the same time,
but A reaches its final value sooner than p does. Figure 3¢ thus
shows x;(¢) and x3(¢) initially increasing, followed by a restora-
tion as the right leg’s actuation nullifies the gained momentum.
Finally, damping pushes the system back to the origin even after
we cease actuation.

SYSTEMS WITH NON-ABELIAN SYMMETRIES
We conclude by demonstrating explicitly that if the system
in Fig. 1 is extended to involve a nontrivial non-Abelian symme-
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FIGURE 4: The hockey puck extended to SE(2).
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FIGURE 5: A shape trajectory for the internal mass.

try, the self-recovery phenomenon as prescribed in this paper is
corrupted. Consider the modified system in Fig. 4, in which the
puck, with rotational inertial J in addition to mass M, now has
the full range of motion on SE(2). The internal mass m can now
move both longitudinally and laterally, and its position relative to
the center of the puck is given by the shape variables r = (&, 7).

Drag forces linear in the puck’s group velocities act on the
puck while it is translating or rotating. It is important to note
that Aggokes 18 still the zero mapping, as is the case for the one-
dimensional puck. This is because actuation of these internal
shape variables does not have any effect on the Rayleigh dissipa-
tion function. If this system were Abelian, then the actual shape
trajectories should not matter for self-recovery; if pg = 0, the
puck should return to its starting position and orientation after
actuation ceases as (7) is trivially satisfied.

For our simulation, we use the parameters m = 1, M = 1,
and J = 1, and we assume that the drag coefficients are the same
for all three group directions with b = 1. Starting with the sys-
tem at rest, we move the internal mass as shown in Fig. 5, so that
there is net displacement in &, the longitudinal direction, but not
in 1, the lateral. The resultant motion of the puck is shown in
Fig. 6. Here we see that the system does not return to its origi-
nal horizontal position and orientation. Even though the Stokes
connection is 0, the system can build up additional momentum
by virtue of the fact that its degrees of freedom do not commute,
hence preventing self-recovery.
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FIGURE 6: The resultant group variable trajectories.

FUTURE WORK

The damping-induced self-recovery phenomenon is, at its
core, a consequence of momentum conservation in the presence
of dissipation. We have extended this observation to systems on
principal bundles and showed the dependence on shape trajecto-
ries when the Stokes connection is nontrivial. Further analysis
may be done for systems for which V depends explicitly on the
shape variables, such as a three-link swimmer experiencing both
viscous drag and inertial effects. This may also be useful for
designing control inputs to steer a system to a particular configu-
ration based on (6), such as coordination of multi-agent systems.
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