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ABSTRACT waveboards in light of ergonomic considéas. More

Through modeling and experimentationye analyze generally, analysis of the locomotive capabilities of this system
common gaits on a waveboard, an underactuated mechanicalnforms control and planning of highly dynamic mobile robots.
system whose motion is governed by both nonholonomic Although the waveboard itself has not appeared often in
constraints and momentum conservation. We take advantage ofgeometric mechanics literature, the sslabard is a similar
the system's symmetries to derive a reduced system model thasystem thahas received considerable attention in the context of
differentiates between kinematic and dynamic components of underactuated systems and controllability of nonholonomic
motion. We evaluate & model using marker trajectory data mechanical systems. The snakeboard was first analyzed as a
gathered through an optical tracking system for various types of nonholonomic mechanical system bystf@wski etal. [2].
gaits. By extracting relevant trajectory parameters via state Shammas etl. [1] analyzel and generatk gaits for mixed
reconstruction and fitting our joint variables to an ellipse, we mechanial systems usingeight functions to anatg geometric
determine the kinematic ogponents of gaits commonly used by phase shift, as well a& novel scaled momentum and gamma
human riders. In particular, we demonstrate that traditional functions to evaluate dynamghase shiftln [1, 3], Shammagt
forward motion is purely dynamic, while sustained turning al. classified gaits into thee different categories: purely
motion contains kinematic components. In order to validate our kinematic, purely dynamic, and kirtynamic More recently,
model, we compare experimentally obtdntrajectories with Shammas and de Oliveira prded an analytical solution to

reconstructed displacements based on the mddehlly, we snakeboaranotion planning [4]. Dear «l. [5] built upon their
suggestan approach for further analgsiof the dynamic work using body coordinates and localjéctory informatiorto
components of these gaits. addresdrajecbry generation. Dear etl. [6] also incorporatk
dissipative friction in the traveling direction and skidding in the
INTRODUCTION snakeboard modelinvestigating these effects on trajectory

The waveboard, alsknown as the essboard, caster board, planning.Asnafi and Mahzoon [7] gendsal some flowetike
vigor board, and rigik, is a skateboard variant in which two  gaits for the snakeboar&imilar geometric approaches can be
platforms, each resting upon a caster wheel, are constrained tapplied to the waveboard in order to analyze its locomotive
rotate about the same agisdcoupled with a torsional spring. It capabilities.
is a mixed mechanical system whose motion is governed by both ~ This paper addresses the challenge of modeling and
nonholonomic velocitgonstraints and momentum conservation. characterizing motions of the wavebodrdthenext section, we
It is modeled similarly to the variable inertia snakeboard present a model for the waveboard and derive its reconstruction
examined by Shammas et[dl], whoused geometric mechanics ~ equation.  Subsequent  sections describe  experimental
to differentiate between kinematic and dynamic components of methodology andanalysis of ommon types of gaits in the
motion framework of gemetric mechanics. @relations between

Relative to traditional twewheel drive systems, the configuratbnal variations and trajectory parameters are
waveboard possessgseater maneuverability and potentially investigated, andhumerically reconstructed forward motion
higher efficiency at the expense of stability. Modeling insight displacements are compared with experimental data.
could be used by designers to optimize kinematic parameters of
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WAVEBOARD MODELING 4

The waveboard consists bfo platforms coupled with a
torsional spring and constrained to rotate along the same axis.
Each platform rests upon a caster wheel that is inclined relative
to the vertical axis. A schematic of the waveboard, illustrating
relevant model parameters, gesentedin Fig. 1. Herg &
represents the mass of the entire systemhalf the mass of the
rider,0 the separation betwedme center ofhewaveboardand
each wheeld the height ofidealized masst above each
platform, and 0 the moment of inertia of theystem about the
vertical axiscoincident with the board center (not shown)

To obtain a dynamical model of the wavebgaxe first
derive the equations of motion by solving the Ellagrange
equations in generalized coordies, as demonstrated by
Kinugasa et al. [8]. We take advantage oftthaal fiber bundle
structure of the configuration spaaed decomposeiitto abase
space which describes internal shape changes of the system, and

FIGURE 1. DIAGRAMS OF WAVEBOARD MODEL,
ILLUSTRATING SIDE VIEW (TOP) AND TOP VIEW

afiber space which describe postion and orientation with (BOTTOM). ANNOTATED MODEL PARAMETERS
respect to an inertial frame. Inherent symmetries rethger INCLUDE CONSTANTS (GREEN), JOINT VARIABLES
Lagrangian and nonholonomic constraints invarianglobal (RED), AND AN INERTIAL FRAME (VIOLET)

position and orientation, allowing us to obtain a simplified and

reduced form of the equations of motionkady coordinates. and orientatiorvariablesg, & and—of the waveboardd , the
The fiber bundle structure allows us to study the effects of base spacerepresents the tiernal degrees of freedorof the
internal shape changes on mation in the inertial frame through awaveboard, comprising obll anglesX%. and%. of the front and

first order differential equation known as theconstruction back platformsrespectively measuredabout the zxis of the
equation This enables u® intuitively visualize kinematic body franerelative to thex-z plane A configuraton variable can
contributions of various periodic internal shape changes then be expresseasry "i N 0 where"O¥ "Oandi M 0 .
(gaits)for further analysis. Similarly, a configuration velocity can then be writtenrps
" , wheren represents the configuration velocity. Since the
Model Assumptions roll angles%. and %. are small, the potential energy of the
The following assumptions are madeorder to simplify system remains fairly catant. This allows us to define the
model derivationand are similar to those [8]. Lagrangian as the total kinetic energy lué system in the form

a. Roll angles of the front and back platforms are small,
ermitting the following small angle approximations. " Lo
p g g gle app O -fon, 4)
OE% %o (1) . . ,
A% o @) wherel is the mass matrix. The Lagrangian of the waveboard
[8] can be expressed explicitly as

where’Q "@ofor the front and back platforms. o o
b. The front and back roll angles alone span the entire 0 -a & ® -0— -6 —a 0AT© 0%OEH
shapespace of the board. Wheel dynamics are ignored,

. . . —® 0 OB+ 0 %Al 6 —a 0AT B 0 %OEL
and the following holonomic constraints map platform
roll angles siectively onto wheel yaw angles by the — 6o 0 OB+ D%ATOS . (5)
relation
o o Nonholonomic Constraints
O ATl OA|l OE%o. , 3) Two nonholonomic constraints act upon the waveboard,
_ namely, a neslide condition on each of the two caster whigls
where'Q "My and| is the constant angle afheel These constraints are expged in Pfaffian form as follows.
inclination.
c. Dissipative elements within the system are neglected. O
, ) 108 OE+ T Alor GATIO o M (6)
Lagrangian Mechanics OB+ T Al aAlfO 1 mig
The configuration ofhe waveboard), is a trivid principal Woo U

fiber bundle.d0 "O 0, where'Q the fiber space with a Lie _ _
group structure, represents the position of the waveboard with  The waveboardpossessegewer nonholonomic constraints
respect @ an inertial coordinate frame, comprising pafsition than fiber variablesand is therefora mixed mechanical system
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[1, 3]. In other words, since the number of constraints is not 4 ca n 0é& % %o

sufficient to specify the full motion of the entire position space, 0 n a  ca n (13)
the systm is also governed by Lagrangian mechanidse 04 % % ﬂ 0 a ¢b D % %
dynamic equatiosm of motion of this type of systm can be
expressed in the form Note that the mass matrix varies with configuration, whose
space is spanned by base varialfies and %.. Thus, the
- — — T, 7 waveboard is similar to the vable inertiasnakeboardiefined

in [1, 3], whose mass matrix is also expressed as a funofion
base variables.

where Q phcf8 fv for eachdimension of the configration Similarly, by substituting Eq(8) into Eq (6), we can

spvacefQ ph; for each nonholonomic constraint, is the compute the nonholonomic cstrmaints in body coordinates as
‘@AM component of , _  _ _ is the set ofLagrange
multipliers, andt T T is the set ofjeneralized forces. 1 Lo S (14)
Body Representation .
For configuationspaces with a Liergupstructure, we can For the waveboard, is

define an actiofg on the configuration manifold and a lifted

action Y on its tangent spac&/0. The body velocity, , o I

which is an element of éhLie Algebra, isxpressed as o (19
u U

L YO Q 8) and

The reduced equatisrof motion then become
where 0 represents the left action on the fiber variables and
“YO represents the left lifted actiomn terms of the system — — 00— _ I (16)
model, this is simply the velocity of the system represented in a
body-fixed frameattached to the center of the waveboard o an
The system dynamics are symmetric with respect to the fiber '
variables, a fact we can easily exploit using our principal bundle B .
structure to derive a reduced set of dynamics. This property Where'Q plt, t is the set obase forcing functiongl 0], and
applies to both the Lagrangian and the nonholonomic & Qis the dual adjoint operator on the Lie algebra.
constraintsi.e.
5 ~ Kinematic and Dynamic Reconstruction
onm 0B AAYB 1 9) The waveboard ia mixed mechanical systeim which the
T A1 1 BNTYB AR (10) nonholonomiaconstraints alone are not sufficient to completely
speci fy t he oxityé$otaegiven basd velbceyrWev e |
Utilizing this property, the dependence of the Lagrangian can derive dirst-orderreconstruction equatidi, 3 of the form
and nonholonomic constraints on the fiber variables

eliminated by expressing the dymics of the system #te Lie : Al sin, (18
group identity [9]. The reduced Lagrangiad computed by
substitutingEg. (8) into Eq. (9), has the form where’Ai is the local fornof the mixed mechanical connection

and3 i is an implicit function ofi . This equation naturally
~ N, follows the principalbundle structure of the systewherein

ah o v i’ (11) trajectories in the base are lifted to trajectories anfther via
Al .
wherel is the reduced mass matrix NotethatEq, (18) presentshe body velocitys a sum afwo
3 separate components. The first term is the kinematic
5 O G oi (12) contribution, whicharisespurely from joint movement. The
01 0i a i ' second term is a dymic or drift component, wheng is the

generalized anholonomic momentum defideas
in which 6 is the local form of the mechanicadnnectiorandO
is the local form of the locked inertia tenddr, 3, which is n —m , 0 106 m, (19)
expresseas followsfor the waveboard.
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TABLE 1. ELEMENTS OF ‘A » MATRIX

o OAIi OE® OE® mo 0 ™ a a 0 & 1™ % TR o TWOE% OE% 0 0 & 0 & % %o
00& OAT % % OE% OE% 0 & ca
0 0 0a OAT OE% 0 0 0a OAT OE%
™0 0a OAT OE% OE% OE% 6 Tma0 0a OAT OE% OE% OE%
™0 0a OAT OE% OE% OE% 6 md0da OATl OE% OE% OE%
TABLE 2. ELEMENTS OF » MATRIX
(0] OAH OE%O OEA%O 0 0 & Ta 0 & %o %o COE%O OE%O 0 0 & 0 & %o %o
00a OAT % % OE% OE%% 10 & ¢a
3 ¢0 OAT OE% OE% 3 00A1T OE®™ OEM | 3 OAl OE% OE%
where m) is the null space of . In general, the system's variables, his first order differential equation isgressed in the

momentum componentsvolve in a way that satisfies the
nonholonomic constraints.

From Eq. (14) and(19), we can derive #h reconstruction
equation to be

1 1 1

C wo i o mad (20)

The reader is referred to [1, 3] for a proof. For the

waveboardAi and3 i are expressed in the following forms.
0 0
Al — 0 0 (21
o} 0
3
31 — 3 (22
3

Symbolic expressions of the subgoonents are presented
in Table 1 andable 2

The generalizednonholonomicmomentum variables are
governed by a first order differential equati@pecifically, fa
systems such as the wavebodrd which the number of

following form.
(23

where, and, are matrices that depend onlyioffl1].

Height Functions

Having obtainedAi and3 i , we can integrate each row
of Eq. (18) with respect to time to compute the body velocity
integral of the waveboarfd2]. From [1, 3], we know that this
integral is equal to the sum of two integrake geometric phase
shift O and the dynamic phasshift O . In particular, the
geometic phase shift is expressed as

O . A1 1Q0 B Al Qi (24)

Each row of the integrand in the righdstexpression is a

oneform, hence the line integral can be converted tolame

integralas follows.

0 A QO IAd Qi

o

(25)

wherel3 is the region enclosed by the g#iiin the base space.

nonholonomic constraints are one less than the number of fiberThe integrand of the above equation is known as the height

& Height Function

(a)

(b)

& Height Function

£ Height Function

(©)

0.4 =04

04
FIGURE 2. HEIGHT MAPS OF WAVEBOARD FOR (A) FORWARD MOTION, (B) LATERAL MOTION, AND (C) ROTATION ABOUT
THE VERTICAL AXIS.
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function [1, 3]. For a twadimensional base space, the height
function foreach fiber direction is

"'Oi R — — (26) —- -
. | ‘ DI
where’Q plglo for each fiber variable. We use testimated R e
parameters in Table, 3vhich correspond with our physical BAA T 4 Cameras ‘—"f-;
systemto calculatevalues othe feight functons for, ,, , and ALY S

, , Which are plottedn Fig. 2

The height functions allow us to visualize theometric
phase shift corresponding to various ga@iscethis base space
is two-dimensional, we canisualize geometric phase shift as
volume beneatithe graph of the height functiomgthin a gait
In turn, gaits that encloseero area in the base spaae inFig.
5(a, b, ¢, and e),are not associated withny volume,hence
geometric phase shift zerofor these gaits

We note that the height function plotted ifFig. @) is
antisymmetric abouf6 1 and % 1T Therefore, any gait
that is symmetric aboueither axisencloses equal areas in
regions vith opposite signhavingno net volumegand thus zero
geometric phase shift in thedirection. Similarly, the and,
height functionsplotted in Fig. 2(b) and 2(c), asmtisymmetric
about%e %0 and %o %o, respectively Thus any gait
symmetric abouthese axgencloses equal areas in regions with
opposite signhaving zerageometric phase shifh thesefiber
directiors.

TABLE 3. MODEL PARAMETERS

Symbol Description Value
a Mass of the entire system 71 kg
a Half mass of rider 35kg
0 Separation between board center and each w 0.095 m
0 Height of mass above each platform 0.100 m
0 Mass moment of inertia of system about vertic 0.64 kg
axis

| Angle of inclination of caster wheel axislative  70°
to horizontalaxis

EXPERIMENTAL METHODOLOGY

Gait analysis of physical motions of a waveboard require
state identification throughout the duration of the gait. This was
accomplished through reconstruction of marker trajectory data
obtained using optical tracking techoes.

Optical Tracking of Waveboard State

Computer vision techniques were usedréxkthe state of
the system at frequent time intervals throughout the course of FIGURE 3. PHOTOGRAPHS OF EXPERIMENTAL
each gait. Four cameras mounted to the ceiling at various APPARATUS FOR OPTICAL TRACKING OF WAVEBOARD
positions anarientationscaptured the motion of markers fixed STATE. TOP: OVERALL SETUP, ILLUSTRATING GLOBAL
to various parts of the boar@ptical trackingsoftwarewas used COORDINATE SYSTEM (YELLOW) AND CAMERA

to reconstruct théhreedimensional position of each marker at MOUNTING LOCATIONS (RED). LOWER LEFT: ONE OF
120 frames per seconé photograph of the overall setup is FOUR CAMERAS USED FOR OPTICAL TRACKING. LOWER

> Pt RIGHT: CALIBRATION DEVICE USED TO DEFINE ORIGIN
presented in Fig. 3. AND ORIENTATION OF GLOBAL COORDINATE FRAME.
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Four reflective markers were adhered towlaeeboard with
adhesive foam. Two markers on each platform were used to
reconstruct the position and handednessbath platforms.
Marker orientation is presented in Fig. Zhe position,
orientation, and configuration of the wavebodmbughout each
gait wee obtainedfrom processedptical tracking data

Gait Generation

Various gaits were performed on the wavebdayd rider
within the field of vision of the cameraSome types ofaitsfor
sustained forward motion are illustrated in Fig\bte that linea
base space motions enclose zero area, having no kinematic
contributions, and are thus associated with purely dynamic gaits.
Amplitude of oscillation was varied for forward motions where
neither leg was idle, while frequency of oscillation was varied
for forward motions with an idle lecA total of 76 gaits were
performed on the waveboard.

. Reflective
Data Processing .

Post processing of optical tracking data comprised of marker sy Markers
identification, state reconstruction, curve fitting, and data !
visualization. First, markensere manually identified based on
their relative po_sition_s within the g!obal coordinate frame_. FIGURE 4. PHOTOGRAPHS ILLUSTRATING MARKER
Waveboard configuration was determined based on the relative  p| AcEMENT ON THE WAVEBOARD. MARKERS WERE
positions of the markers. Measurements of marker placement EIxED TO THE BOARD USING ADHESIVE FOAM PADS
were coupled with these data to calceiltite relative position of (TOP).
the center of the board. Global orientation of the board was
calculated by vector dot products between axes of global and Curve fitting of the time variation dfase variablewas used
body coordinate frames. Finally, absolute positions of the to precisely quantify gait parameters aretiuce noiseAll gaits
markers in the global frame were used to deteentie position resulting in sustained forward motiomere assumed to have
of the center of the board in global coordinates. Thus, full state sinusoidal inputs of the form
reconstruction of the waveboard was achieved from marker
tracking data. % © OBlTo 3 6, 27

(@) & &I« (b) Qi ¢BA( (c) Q@i (d) “Tcé 0D ¢ () “€ 0HGWI ¥

[ Het TTH D) |l TTH D) T He
CHED D) TMH [ ™

Base Space Base Space Base Space Base Space Base Space
2 2 2 2 2
1 1 1 1 1
=) =) =) = =3
o o o O o
= 0 H = 0 = 0 = 0 = 0
= e = el =
e s e @ &
2 2 -2z 2 2
E E 3 3 B
-3 -2z -1 o 1 2 3 -3 -2 -1 o 1 2 3 -3 -2 -1 o 1 2 3 -3 -z -1 o 1 2 3 -3 -2 -1 o 1 2 3
¢, [rad] ¢, [rad] ¢, [rad] ¢, [rad] o [rad]

FIGURE 5. DIAGRAMS ILLUSTRATING GAITS PERFORMED ON THE WAVEBOARD. FOR EACH GAIT, BOARD
CONFIGURATIONS (TOP) AND BASE SPACE MOTIONS (BOTTOM) ARE ILLUSTRATED. NOTE THAT STRAIGHT LINES ARE
HIGH ASPECT RATIO ELLIPSES, AND THAT BASE SPACE MOTIONS ARE COUNTERCLOCKWISE SINCE REAR LEG MOTION
TRAILS FRONT LEG MOTION.
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where'Q "G for the front and back platforms, aads time.
Nonlinear leastsquaresoptimization techniquesvere used to

solve for values of constants, |

, 3, and 6 , which are

oscillation amplitude, oscillation frequency, phase offseid
roll angle offset bias, respectively. The phase dagof back

platform oscillation relative to front platform oscillation is

computed as

3

By the definition of a gait as a periodic motion, the

(29)

RESULTS
Plots of relevant parameters for each type of gait that was
performed are qualitatively analyzed. Experimentally obtained
base space motions are superimposedthe height maps

presented in Fig. 2 to determine the geometric phase shift for

varioustypes ofgaits. Eqation (19) was usedo compute the

generalized nonholonomic momentum ftine duration of
motion, andEg. (8 and(18) were usedo compute the fiber
velocity "Qin the global frameThe global velocitywas then
integratedo compute displacemeintthe dobal frame, resulting

oscillation frequencies of the front and back platforms should be displacement.
identical and are thus averaged in presentation of fitted

parameters.

t=21s

Base Space of Fitted Data

t=225s

in anapproximate measure of the translatiomahponent of the

A traditional gait for forward motion on the waveboard is
presented in Fig. 6. Forward velocigmaindairly constant. We
immediately observe &m the shape of the ellipse in Fig. 6(a)
that the motion is more out of phase than in phase, due to the
downward slope of the major axis of the ellipse. A phase lag of

t=24s

Board Orientation

x [m]

t=255s

Board Center Displacement

0.2
T
0.15 (a) -
™ 02
0.1
0.05 T o
—= | fi=p
= P
< o E
& 2
08 |
o <
04 Z o1
=4
015
T~ 02t
02 —
025
03 02 0.1 0 01 02 03
[ [rad]
& Height Function
(e)

o ¢;data

o fit
o fit

o ¢, datal

Orientation State

\ T —

— wy [rad/s]

Position [m]

05

05k

(d)

—x
¥
z

24 26

@ -

Time [s]

& Height Function

FIGURE 6. TRADITIONAL GAIT FOR SUSTAINED FORWARD MOTION OF THE WAVEBOARD. TOP ROW: ANIMATION SEQUENCES.
MIDDLE ROW: PLOTS ILLUSTRATING (A) BASE SPACE OF FITTED DATA, AND TIME VARIATIONS OF (B) ROLL ANGLES, (C)
BOARD ORIENTATION STATES, AND (D) BOARD CENTER DISPLACEMENT. BOTTOM ROW: BASE SPACE OVERLAID ON HEIGHT
FUNCTIONS FOR (E) FORWARD MOTION, (F) LATERAL MOTION, AND (G) ROTATION ABOUT THE VERTICAL AXIS.
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t=15s
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z 0 B — | b =
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FIGURE 7. ALTERNATIVE GAIT FOR SUSTAINED FORWARD MOTION OF THE WAVEBOARD, IN WHICH FRONT AND REAR
PLATFORMS OSCILLATE ENTIRELY IN PHASE. TOP ROW: ANIMATION SEQUENCES. BOTTOM ROW: PLOTS ILLUSTRATING
(A) BASE SPACE OF FITTED DATA, AND TIME VARIATIONS OF (B) ROLL ANGLES, (C) BOARD ORIENTATION STATES, AND
(D) BOARD CENTER DISPLACEMENT.

1.85 rad was calculated in rear platform motion relative to front contribute significantly to this gait, implying a purely dynamic
gait. Once again, forward velocity remains fairly constant.

platform motion by Eq.(28). Although this type of motion

encloses a finite area in the base space, inspection of the
height map of Fig. 6(eyeveals that this type of motion is

associated with negligible kinematic contributiol®

TT .

We conclude that this traditionaype of gait for sustained

forward motion on the waveboard is purely dynamic. This

Shammas et al. [1] that this type of gait is purely dynamic.

Fig. 7. As expectedye obtainan ellipse withan (pwardsloping
major axis and a high aspect ratio in the base space, whichmodel

Actual phase lag- of fitted data as defined in Eq(28), was

approximately 0.0562 rddr this gait

A comparison between experimentally obtained and
reconstructed displacements in the forward direction in the
global frameis presented inFig. 8. Displacements were
experimental evidence supports the original hypothesis made bycomputed through sequentiapplicationof Eq. (19), (8), and
(18) for eachgait Reconstrated global displacements closely
An alternative gait for forward motion, in which front and match the experimental data for short time intervals, supporting
rear platform oscillations are entirely in phase, is presented in the validity of our modeDifferencescould bedue touncertainty

in model paramete(gspeciallynassandmoment ofinertia) and

assumptions egpecidy

regarding  friction)

indicates negligible phase lag between front and rear platform Accumulation of error with time is attributed to amplification of
motions.The geometric phase space represented by the small nevelocity error upon integration. Relatively higher error levels
volume enclosed underneath the height function dog not associated with reconstructing the alternative gait are associated

Displacement (z) [m] Displacement (z) [m]

2.6

FIGURE 8. COMPARISON BETWEEN COMPUTED AND EXPERIMENTAL DATA FOR GLOBAL DISPLACEMENT IN FORWARD
DIRECTION FOR TRADITIONAL GAIT (LEFT) AND ALTERNATIVE GAIT (RIGHT).

2.0 — — Computed Global Position 2.0 | — Computed Global Position
[ Experimental Global Position Experimental Global Position

1.5+ 1.5

1.0+ 1.0

0.51 0.5f
e e L Time [s] T | i Time [s]
g 1.6 1.8 2.0 2.2 24 1.5 2.0 2.5
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z [m]

Roll Angles vs. Time Board Orientation Board Center Displacement
2

(C) i —— 9, [rad] (d) —x
ook | wylradis] Y
7 | | z

~
0

> ¢ data
04

o ¢pdata

- oN

03

I L “L,-,,,_ 1

& ) [rad]
S

o

Roll Angles [rad]

Orientation State
& =
o = @
{
\
Position [m]
o
s &
/
|
|
\

B

s
o
°
°
i
°
b
°
<
°
o
&
~
fo
o
@

o 05 1 15 2 25 3 35 4 45 o 05 1 15 2z 25 3 35 4 45 o 05 1 15 2 25 3 35 4 45
Time [s] Time [s] Time [s]

FIGURE 9. GAIT FOR COUNTERCLOCKWISE TURNING MOTION OF THE WAVEBOARD AT LOW SPEED. TOP ROW:
ANIMATION SEQUENCES. BOTTOM ROW: PLOTS ILLUSTRATING (A) BASE SPACE OF ORIGINAL DATA, AND TIME
VARIATIONS OF (B) ROLL ANGLES, (C) BOARD ORIENTATION STATES, AND (D) BOARD CENTER DISPLACEMENT.

with larger roll angles violatinthe aforementionegmall angle reconstruction equation. Differences could be used to tune model
assumptionsto a greater extentwhich is evident upon parameters in a future investigation.
comparison of Fig. 6(b) and 7(b). A future study wuld involve computingthe momentum

A gait for sustainedcounterclockwiseturning motion is usingthe momentum evolution equation presenteé&adn (23)

presented in Fig. 9. Since the time variations of roll angles do notas well asody velocities and body velocity integrals using th
follow the form of Eq. (27), the original data, rather than fitted obtained generalizedmomentum. Through this framework,
data, was usetb plot the base space in Figa® Although the comparisons of output peameters between model and
direction of motion in the base spasenot specified, it can be  experiment corresponding to a given gait couldbantitatively
assumed to be counterclockwisenca rear platform motion analyzed. This would allourther experimental evaluation of
trails front platform motionby virtue of caster wheel incline the system modeand its underlying assumptions, ultimately
associated witthoard directionality Inspection of the height  informing design and control of highly manesrable robots.
mays of Fig. 2 indicates that a counterckwise motion in the

upper right quadrant of the base space results in a significantACKNOWLEDGMENTS

positive kinematic contribution towarderward and angular The authors thank Jin Dai for his assistance operating the
displacementput no significant kinematic contributionn the OptiTrack Motive optical trackingystem and Elie Shammas for
lateral body directionWe can conclude that giype of gait is hisinsighttowards modeling mixed mechanical systems.
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