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INTRODUCTION 
Airway management is fundamental for all anesthetic as        
well as emergency medicine procedures to maintain       
airway patency, prevent aspiration and permit      
ventilation without leakage. While endotracheal     
intubation and tracheostomy are regarded as the go-to        
procedures in such incidents, they are reportedly       
correlated with numerous side effects which can       
sometimes even be life-threatening [1]. These      
complications stem from the fact that essentially a        
human is blindly and manually maneuvering the       
intubation tube. In order to mitigate the ensued risks and          
aftereffects of currently employed methods, this work       
uses a surgical snake robot [2] to autonomously        
navigate down the airway.  

The contribution of this paper is developing the        
navigation policy that utilizes images from a monocular        
camera mounted on its tip. We use Q Reinforcement         
Learning in Deep Convolutional Neural Networks      
(DCNN) [3], widely referred to as Deep Q        
Reinforcement Learning Neural Networks (DQNN), to      
produce these policies. The system can serve as an         
assistive device for medical personnel to perform       
endoscopic intubation, with minimal to no human input. 

MATERIALS AND METHODS 
Reinforcement learning (RL) has proven to be a        
successful tool for autonomous navigation and control       
over the past years. The objective of RL is to learn good            
policies for sequential decision problems by optimizing       
accumulated reward indicators [4]. In particular,      
learning to control agents from sensory data like vision,         
had been of great interest to the community [5, 6],          
including advancements introduced by Google     
DeepMind [3]. Most methods employ DCNN in Q        
learning implementations of RL algorithms. These      
innovative approaches empower agents to accurately      
predict optimum courses of thousands of sequential       
actions, in the presence of noisy input data in dynamic          
environments. 

Although deep RL is currently facing an       
unprecedented resonance in the majority of engineering       
fields, it has not yet been used widely in the medical           
domain. To the best of our knowledge, no existing         
literature suggests its deployment for endoscopic      
intubation. This paper demonstrates that a DQNN 

 

 
Fig. 1 (a) Surgical snake robot in assistive respiration. (b)          
Image of trachea as seen from the camera on the head of the             
robot. (c) The trachea is a non uniform curved tube of length            
100-120 mm and diameter 18-20 mm. 
 
framework can accurately enable a flexible snake robot        
to navigate inside a patient’s airway using camera        
images (Fig 1 (b)). 

Given the inter-patient variability as well as       
poor lighting and featureless environment, conventional      
motion planning and computer vision algorithms do not        
produce results with high levels of confidence.       
However, data driven RL algorithms rely solely on        
information from the unknown Markovian1     
environment. Hence, eliminating the prevalent need of       
most machine learning methods for large labeled       
datasets. Therefore we consider RL. 

In this work, a surgical snake robot (see Fig. 1          
(a)) plays the role of the agent2. The underline control          
algorithm interprets its state by propagating the       
camera’s live feed through the DCNN and predicting        
the optimum action. In order to train the network in a           
realistic context, we formulated a Gazebo simulation as        
shown in Fig 2. Since the robot is a follow-the-leader          
mechanism [2], we restrict our learning to the actions of          
the tip of the robot alone. This helps reduce the          
computational complexity of the model and      
significantly accelerates the training time. 

The sensory input supplied to the system are        
84×84×3 RGB images from a camera mounted at the tip          
of the robot’s head which carries its own light source. 

 

 

1Markovian is used to describe a fully observable environment where the state transition probability function depends on the future state given the                      
present state [4].  
2In RL, agent is the entity that learns how to perform the intended task (for example robot, vehicle, etc.) [4]. 



Fig. 2 Gazebo training environment including the agent (snake         
scope head), five different trachea models on which the         
DCNN was trained, the projection of the camera frame and the           
9 discrete actions the agent is allowed to take. 
 
The DCNN has 4 convolutional hidden layers followed        
by 2 fully connected layers which are split into two to           
form the proposed dueling structure [6]. The number of         
outputs is equal to the discrete number of possible         
actions that the agent is allowed to take, which in our           
case is 9 (See Fig. 2). In each of the defined actions, the             
head of the snake is oriented to the desired pitch/yaw by           
5 deg and then advanced one step in the forward          
direction by 0.5 mm. 

The network is iteratively trained for 80,000       
episodes using stochastic gradient descent to update the        
weights over a batch of 32 experiences. The exploration         
rate, which reflects to the randomness of the selected         
actions, is linearly decreased from 100% to 1% after         
70,000 episodes (see Fig. 3). The reward function is         
defined such that the further the distance traversed,        
higher the assigned reward. The termination conditions       
for each episode are - (1) Reaching the end of the           
trachea, (2) completing more steps than allowed, and (3)         
colliding with the walls. In order to detect collision         
between the solid bodies, two 2D lasers were mounted         
on the coronal and transverse plane of the agent.         
However, they will not be included in the actual         
experiment and they are only used for ease of collision          
detection in simulation.  

 
Fig. 3 Accuracy and loss versus number of training episodes.  

In order to improve the robustness to different        
environments, and smoothly transfer to real world       
scenarios, domain normalization [7] is implemented by: 

● Adding Gaussian noise to the camera data 
● Varying the color of each model 
● Randomizing agent’s initial position and pose 
● Randomly selecting a trachea model every 10       

episodes 
The following hyperparameters for the learning      
algorithm were hand-tuned through iterative trainings:      
discount rate=0.98, learning rate=0.0005, collision     
penalty=40, completion reward=100, buffer memory     
size=60,000 and batch size=32.  

RESULTS 
In Fig. 3 we present the resulting accuracy over training          
episodes, which eventually converged to 92%. In our        
setup, accuracy is calculated as the number of successes         
in 100 consecutive episodes, where success is counted        
only if the agent reaches the end of the trachea without           
meeting any of the other two terminating conditions 3.         
We also present the mean loss of each episode of our           
training in Fig. 3, which is calculated as the average of           
the quadratic loss values over all steps of an episode. 

DISCUSSION 
We have implemented an autonomously navigating      
agent within a trachea using DQNN. This is challenging         
because the trachea is highly confined and thus two         
consecutively wrong actions could have inevitably lead       
to unwanted collision, i.e. failure. To address this        
challenge, we implemented a reinforcement learning      
approach, which produces policies that only select the        
appropriate action to navigate. We believe the approach        
in this paper can serve as an assistive device for a broad            
spectrum of endoscopic procedures. Of particular      
interest to the authors involve extending this approach        
to natural orifice transluminal surgery (NOTES) and       
endoscopic submucosal dissection (ESD).  
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