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Abstract— Probabilistic planners such as Rapidly-
Exploring Random Trees (RRTs) and Probabilistic
Roadmaps (PRMs) are powerful path planning algorithms
for high dimensional systems, but even these potent tech-
niques suffer from the curse of dimensionality, as can
be seen in multirobot systems. In this paper, we apply
a technique called subdimensional expansion in order to
enhance the performance of probabilistic planners for
multirobot path planning. We accomplish this by exploiting
the structure inherent to such problems. Subdimensional
expansion initially plans in each individual robot’s config-
uration space separately. It then couples those spaces when
robots come into close proximity with one another. In this
way, we constrain a probabilistic planner to search a low
dimensional space, while dynamically generating a higher
dimensional space where necessary. We show in simulation
that subdimensional expansion enhanced PRMs can solve
problems involving 32 robots and 128 total degrees of
freedom in less than 10 minutes. We also demonstrate
that enhancing RRTs and PRMs with subdimensional
expansion can decrease the time required to find a solution
by more than an order of magnitude.

I. INTRODUCTION

Multirobot systems have great promise for surveil-
lance and search and rescue, as well as warehousing
applications, thanks to their inherent redundancy and
flexibility. Unfortunately, the flexibility and power of
multirobot systems comes at the price of a high dimen-
sional configuration space. Handling such high dimen-
sional configuration spaces is one of the fundamental
problems of multirobot path planning.

Probabilistic planners such as Rapidly-Exploring Ran-
dom Trees (RRTs) [11] and Probabilistic Roadmaps
(PRMs) [9] have demonstrated the ability to handle
high dimensional systems [1], including multirobot sys-
tems [3], [6], [15], [17], [18]. Unfortunately, multi-
robot systems can reach sufficiently high dimensionality
where even these approaches have difficulty. We seek
to enhance the performance of RRTs and PRMs for
multirobot path planning by exploiting the structure of
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Fig. 1: (a) A standard probabilistic planner searches the full configu-
ration space of a multirobot system to find a path from the initial con-
figuration (square) to the goal (star) which avoids configuration space
obstacles (ovals). Black ovals represent robot-obstacle collisions, while
the checkered oval represents a robot-robot collision. (b) We seek
to improve the performance of probabilistic planners for multirobot
systems by restricting their search space to a one dimensional structure
(dotted line). This search space is generated by combining paths found
by planning for each robot separately, so the search space may initially
be blocked by robot-robot obstacles. (c) When the search space is
determined to be blocked, its dimensionality is increased around the
states leading to the obstacle (area enclosed by dashed line). We then
use independent planning in the single robot configuration spaces to
generate new one-dimensional structures to reconnect the search space
to the goal (dotted lines).



the problem, to allow us to search a space smaller than
the full configuration space of the the system (Figure 1).

One standard approach to planning for high di-
mensional multirobot systems is to apply a decoupled
algorithm such as trajectory coordination or priority
planning, in which the planning for each robot is done
separately [5], [8], [12], [13], [14]. Sánchez and Latomb
show that a decoupled algorithm (path coordination on
graphs built by PRMs) often fails to find a solution
in realistic environments [16]. We conclude from their
work that even in the context of probabilistic planners,
intelligently varying the dimensionality of the search
space is necessary in order to combine the speed of
decoupled approaches with the reliability of coupled
approaches.

There are several algorithms which combine proba-
bilistic planners with variable coupling. Clark et al. [4]
have introduced dynamic networks, a run-time algorithm
which uses communication constraints to determine
which robots must couple their planning. Švestka and
Overmars [19] have shown how to construct a roadmap
in the full configuration space using a PRM constructed
in a single robot configuration space. Furthermore, the
authors show that decomposing the full configuration
space roadmap into a hierarchy of mutually independent
subgraphs allows planning for multiple robots to be
partially decoupled without losing probabilistic com-
pleteness. Sucan and Kavraki developed Task Motion
Multigraphs (TMMs) for mobile manipulation, which
provide multiple spaces of varying dimensionality in
which the planning for a specific task can be performed
[18][17]. TMMs can be adapted for use in multirobot
path planning as they can implicitly perform decoupled
planning, while still being able to search higher dimen-
sional spaces when necessary.

In our previous work [20], we introduced a technique
for multirobot path planning that we call subdimensional
expansion. Subdimensional expansion exploits the struc-
ture of the multirobot path planning problem by first
planning for each robot separately, in its own configura-
tion space. We then combine the paths produced by the
individual plans to form a one-dimensional search space,
embedded in the full configuration space, for the full
system. As the search space is explored, robot-robot col-
lisions are found. These collisions are used to guide the
expansion of the search space, producing a search space
whose dimensionality is dependent on the interactions
between robots, rather than on the total number of robots
in the system. While subdimensional expansion has dis-
tinct similarities with TMMs, subdimensional expansion
can increase and especially decrease the dimensionality
of the search space with greater flexibility and locality
than TMMs, and has a more principled way of determin-
ing how the dimensionality of the search space must

be augmented. We previously applied subdimensional
expansion to graph search, resulting in the M* algorithm
[20].

In this paper, we apply subdimensional expansion
to probabilistic path planning techniques, namely RRTs
and PRMs. Basing subdimensional expansion on prob-
abilistic planners improves its performance for robots
with higher dimensional individual configuration spaces,
allowing us to plan for systems of more complex robots,
such as those with dynamic constraints. While the basic
concept of subdimensional expansion remains constant,
the manner in which the search space is constructed
depends upon the planner being used.

II. SUBDIMENSIONAL EXPANSION

Subdimensional expansion is a technique for con-
structing a search space while being explored by a
planner, the partial results of which are used to guide
the construction of the search space. Subdimensional ex-
pansion is built on two primary concepts; the individual
policy and the collision set.

The individual policy φi maps points in the configu-
ration space Qi of the ith robot ri, to the optimal action
for ri at that location in the absence of other robots.
Each robot obeys its respective individual policy until
there is evidence that doing so may result in a collision
with another robot (Figure 2).

The collision set records the robots for which the
individual policy is insufficient. The collision set Ck for
a given point in the joint configuration space qk ∈ Q =∏

iQ
i is the set of robots ri for which the planner has

found a path through qk to a collision between ri and
another robot. Ck is updated as the planner explores
more paths and discovers more collision states.

When the planner seeks to extend a path from qk, each
robot not in Ck can safely obey its individual policy, but
all possible paths for robots in Ck must be considered. A
search space of variable dimensionality is constructed by
following this procedure. While theoretical guarantees
will depend on the details of the implementation, we
were able to show that M* [20], an implementation of
subdimensional expansion for graph search, is complete
and produces optimal paths. When the path optimality is
relaxed to ε-suboptimality1 we showed empirically that
M* has sub-exponential growth in computational cost
with the number of robots.

III. SRRT
RRTs were introduced by LaValle and Kuffner as

an efficient single-query planner for high dimensional
systems [11]. RRTs construct a search tree in the full
configuration space of a system whose root is the

1A guarantee that the returned path will cost no more than ε times
the cost of the optimal path
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Fig. 2: (a) A conceptual visualization of a variable dimensionality
search space for five robots. Initially each robot is constrained to its
individual policy, represented by a single line. (b) When robots 1
and 2 collide, the local dimensionality of the search space must be
increased, as represented by a square. (c) When three robots collide
while following their individual policy, the local dimensionality of the
search space must be increased further, represented by the cube, to
include all local paths of the three robots. Once robot 3 clears robots
4 and 5, it no longer must remain coupled with them, even though
robots 4 and 5 continue to interact. Depending on the desired path
optimality, the interaction between robots 2 and 3 may be resolved
without coupling their planning with robots with which they had
previously interacted.

initial configuration. The tree is extended in a three
step process. First, a random sample is drawn from
the full configuration space. A local planner then finds
a local path from the nearest node in the search tree
towards the random sample. Finally, the local path is
tested for collisions. If no collisions are found, the final
configuration of the local path, which may not be the
same as the random sample depending on the local
planner, is added to the search tree. Once a configuration
sufficiently close to the goal is added to the tree, a path
to the goal from the initial configuration can be retrieved.

Subdimensional expansion can be implemented with
RRTs, resulting in the sRRT algorithm. To do so, we
must modify the sample generation step, so samples are
drawn from the search space constructed by subdimen-

sional expansion instead, of the full configuration space.
We must also add a step to update the collision sets
based on the results of collision checking each local
path.

We denote an RRT tree as a set of nodes, T =
{(qk, pk, Ck)}, where each node contains a configura-
tion qk, a pointer to its predecessor node pk, and a
collision set Ck.

While we prefer to use optimal individual policies,
constructing such policies is infeasible when the dimen-
sionality of the individual robot configuration space is
large. Therefore, we use RRTs to construct the individual
policies. The individual policy for ri is constructed by
building a tree T i in Qi. We grow the tree back from
the goal configuration qiF so that we can efficiently find
a path to the goal from many different configurations.
Since the tree is grown backwards from the goal con-
figuration, the predecessor of qk in T i is the next step
on the path defined by φi to the goal from qik. We can
therefore use pik to define the individual policy

φi(qik) = pik. (1)

If qik 6∈ T i, we first extend T i until qik ∈ T i.
Path planning for the full system is done by growing

a tree Tf forwards in the full configuration space, from
a root node at the initial system configuration qI . The
expansion of Tf is restricted to the search space Q#

determined by subdimensional expansion. We construct
the search space by identifying each node qk ∈ Tf with
a local search space Q#

k = {q | qi = φi(qir)∀i 6∈ Cr}.
The local search space is the set of configurations which
can be reached from qr when the robots not in Cr obey
their individual policy.

We can bring a randomly generated sample qs ∈ Q
into Q# by a simple projection operation. Let qr be the
nearest node to qs in Tf . We can project qs onto Q#

r

by replacing the coordinates for each robot not in Cr

with the coordinate for that robot’s next step along its
individual policy from qr (Figure 3).

q′s =
∏
i

{
φi(qir) ri 6∈ Cr

qis ri ∈ Cr

(2)

Once a sample is generated, and the local planner
finds a path from qr to q′s, the collision checker searches
for robot-robot and robot-obstacle collisions. If ri is
found to be involved in a robot-robot collision, ri is
added to Cr, then recursively added to the collision sets
of the predecessor nodes of qk.

The collision set update process is necessary to de-
termine when Q# is blocked by robot-robot collisions,
and serves to increase the local dimensionality of Q#

to allow paths around said collisions to be found. As a
result, while our search space is low dimensional, like
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Fig. 3: (a) We show how a random sample qs gets projected onto the
search space in the Voronoi region of the node qr . We visualize a three
robot configuration space by showing the coordinates of each robot
side by side. qir gives the location of the ith robot in qr . The arrow
points along the individual policy from qr to the next configuration
φ(qr). In the circles show the random sample qs before any projection.
(b) Cr = ∅, so each robot is restricted to its individual policy, resulting
in the projected sample q′s. (c) Cr = {r1, r2}. Therefore, only robot
r3 is restricted to its individual policy, resulting in the projected sample
q′′s

that of a decoupled algorithm, it can dynamically grow
when it has been shown to be insufficient, avoiding the
failures that may be inevitable with a fully decoupled
approach.

IV. SUBDIMENSIONAL EXPANSION WITH PRMS

A PRM generates a roadmap covering the configu-
ration space, which is then passed to a graph search
algorithm to extract the desired path. M* is sufficiently
general that we can apply it to the graphs generated
by a PRM, resulting in the sPRM algorithm. sPRM
allows for path planning of multirobot systems while
only constructing PRMs in the single robot configuration
spaces. Our approach to constructing PRMs follows that
of Švestka and Overmars [19], who used multiple copies
of a single robot PRM to construct a roadmap in the full
configuration space (Figure 4).

We construct a PRM in the configuration space of
each robot ri, resulting in the roadmaps Gi

S . We use
the initial and goal configurations of the robot, qiI and
qiF as samples in addition to random samples. We
can construct a single PRM to be shared by multiple

(a)

(b)

Fig. 4: (a) We show a PRM constructed in a single robot configuration
space that connects the initial configuration (box) to the the goal
configuration (star) for three homogeneous robots, indicated by pattern.
Circles are randomly generated samples used to construct the PRM.
(b) We construct a PRM in the full configuration space of the three
robot system by taking the Cartesian product of three copies of single
robot PRM.

homogeneous robots, in which case the initial and goal
configurations of all homogeneous robots are used as
additional samples. We assume that qiI and qiF lie in
the same connected component of Gi

s. We acknowledge
that this may be a computationally difficult problem,
especially for workspaces with narrows corridors [2],
[7]; this is a problem common to all PRMs. For the
sake of explanation, we assume that PRMs can be
successfully constructed in single robot configuration
spaces.

We then run rM*, a more efficient variant of M*
[20], on the implicitly defined graph G =

∏
iG

i
S to

find a joint path. Since G is constructed incrementally,
robot-robot collisions are checked in a lazy manner
giving some of the benefits of the lazy collision checking
performed by Bohlin and Kavraki [1]. Assuming a
collision free joint path exists, Švestka and Overmars
[19] showed that the probability of G containing a
collision free path goes to 1 as the time spent generating
GS goes to infinity. Since M* is complete [20], the
procedure described above is probabilistically complete.
While RRTs can be used to generate roadmaps, such



Fig. 5: We plot the percent of trials in which each algorithm was able to
find a solution within 12 minutes, and the 10th (solid), 50th (dashed),
and 90th (dots) percentile of times required to find a solution using
RRT and sRRT. The plateauing that is apparent in the time plots is the
result of the algorithms timing out in increasingly large percentages
of trials.

roadmaps are inappropriate for this approach, since trees
do not contain efficient alternate paths between two
points.

V. RESULTS

To test our algorithms, we ran simulations on an AMD
X6 at 2.8 GHz with 8 GB of RAM. We simulated
planar circular robots of radius 0.5 in the presence of
circular obstacles of radius 0.5. We generated square
environments with 1 robot per 100 units area, and
5 obstacles per 100 units area. All coding was done
in unoptimized python. Our PRM implementations are
parallelized across the six available cores.

A. sRRT
For sRRT, we simulated kinematic circular robots in

the plane. Each trial was given five minutes to find a
solution, or the trial would be considered a failure. We
ran 100 trials for each algorithm for each number of
robots. Our simulations show (Figure 5) that sRRT offers
substantial performance advantages over basic RRT.
sRRT can successfully find a path within 12 minutes
twice as often as RRT at 4 robots, and sRRT still has a
50% success rate at 8 robots, where basic RRT almost
never finds a solution within the time constraints.

B. sPRM
We first implement sPRM for simple kinematic

robots. For a given number of robots, sPRM was tested
on 40 environments, while basic PRM was tested on 10
environments. Our basic PRM implementation has great

Fig. 6: We plot the percent of trials in which each algorithm was able
to find a solution within 5 minutes, and the 10th (solid), 50th (dashed),
and 90th (dots) percentile of times required to find a solution using
subdimensional PRM. Note that the plot for the standard PRM goes
to 10 robots, while sPRM reaches 32 robots

difficulty solving problems involving 4 robots within our
5 minute time constraints, while sPRM can effectively
solve 32 robot problems (Figure 6).

We then show the ability of sPRM to handle robots
with dynamic constraints. Our simulated robots used the
following dynamics.ẋẍẏ

ÿ

 =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


xẋy
ẏ

+

0 0
1 0
0 0
0 1

[axay
]
, (3)

where ax, ay ∈ [−5, 5] are the commanded acceleration.
Our local planner uses cubic basis functions to find a
solution to the system of equations (3) which connects
two desired points in the configuration spacex(t)ẋ(t)

y(t)
ẏ(t)

 =

ax bx cx dx
0 3ax 2bx cx
ay by cy dy
0 3ay 2by cy


t

3

t2

t
1

 , (4)

t ∈ [0, 1].

The boundary conditions for (4) can be written as

x(0)
x(1)
ẋ(0)
ẋ(1)
y(0)
y(1)
ẏ(0)
ẏ(1)


=



0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0
3 2 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 3 2 1 0





ax
bx
cx
dx
ay
by
cy
dy


. (5)



Fig. 7: We plot the percent of trials in which each algorithm was
able to find a solution within 10 minutes, and the 10th (solid), 50th
(dashed), and 90th (dots) percentile of times required to find a solution
using a PRM in the full configuration space and subdimensional PRM.
The plateauing that is apparent in the time plots is the result of the
algorithms timing out in increasingly large percentages of trials. Note
that the full configuration space PRM results are only plotted to 10
robots, while the sPRM results are plotted to 32 robots.

The coefficients that define the trajectory can be found
by matrix inversion.

The results of our simulation show the dramatic
improvement in performance offered by sPRM over
a full configuration space PRM (Figure 7). The full
configuration space PRM had only a 50% success rate
in solving a 2 robot problem, and never succeeded in
solving a 3 robot problem within the 10 minute time
limit (which allowed for approximately 20,000 samples).
sPRM was able to solve 32 robot problems with high
reliability.

We attribute this difference in performance in part to
the fact that the volume space that can be reached in
a single step by our local planner without violating the
acceleration limits is comparatively small. Therefore, the
likelihood that all the robots in the system would be able
to transition between the states specified by two random
samples from the configuration is very low. As a result,
building a conventional PRM in the full configuration
space for the above combination of dynamics and local
planner is very difficult.

C. Narrow Passages

To test the performance of our algorithms in the
presence of narrow passages, we constructed an envi-
ronment in which between two and six robots must
swap positions, after passing through a narrow passage
(Figure 8). We tested each algorithm 10 times in this
environment for two, four, and six robots, using a three

hour time-out. To allow for more rapid testing and better
comparisons, the PRMs were restricted to a single core.
The basic RRT ran out of time in three of the 6 robot
trials, while the basic PRM always timed out for the 6
robot trial (Figure 9).

Our results show that subdimensional expansion pro-
vides significant benefits when dealing with narrow
passages. The individual policies effectively allow the
narrow passage problem to be solved in the single
robot configuration spaces, leaving only the coordination
problem to be resolved in the joint configuration space.
On average, sPRM performed substantially worse than
sRRT, but this poor performance is mainly due to a small
number of trials which took extremely long amounts
of time. The solution time of sPRM for 6 robots was
dominated by the time required to search the roadmap
with rM*, as the actual construction of the roadmap took
at most 6 seconds. This suggests that the best collision
free path in the roadmap costs much more than the
optimal path for which collisions are ignored. Such an
environment would force rM* to search a large portion
of the joint configuration space, dramatically increasing
the time required to find a solution.

VI. CONCLUSIONS

We have demonstrated that subdimensional expansion
can be applied to probabilistic planners and systems
with dynamic constraints. We have further shown that
implementing subdimensional expansion can decrease
the time required to find solutions by more than an
order of magnitude, especially for systems of 4 or
more robots. We note that sPRM generates superior
results to sRRT for comparable systems. We believe
that this is partly due to our use of rM* as the graph
search algorithm in sPRM. rM* can decouple groups
of robots involved in widely separated by simultaneous
collisions[20], substantially reducing the dimensionality
of the search space. We intend to implement a similar
approach in sRRT as future work.

We also intend to investigate proofs of probabilistic
completeness for sRRT. Standard approaches to proving
the probabilistic completeness of planners cannot be
applied to sRRT, because sRRT will never cover the full
configuration space if no collisions occur along the path
initially generated by the individual policies [10]. There
are also certain pathological cases involving discrete
individual policies that must also be addressed in any
such proof.
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