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Abstract

Pose estimation is central to several robotics applications such as registration, hand–eye calibration, and simultaneous

localization and mapping (SLAM). Online pose estimation methods typically use Gaussian distributions to describe the

uncertainty in the pose parameters. Such a description can be inadequate when using parameters such as unit quaternions

that are not unimodally distributed. A Bingham distribution can effectively model the uncertainty in unit quaternions, as

it has antipodal symmetry, and is defined on a unit hypersphere. A combination of Gaussian and Bingham distributions

is used to develop a truly linear filter that accurately estimates the distribution of the pose parameters. The linear filter,

however, comes at the cost of state-dependent measurement uncertainty. Using results from stochastic theory, we show that

the state-dependent measurement uncertainty can be evaluated exactly. To show the broad applicability of this approach,

we derive linear measurement models for applications that use position, surface-normal, and pose measurements. Experi-

ments assert that this approach is robust to initial estimation errors as well as sensor noise. Compared with state-of-the-art

methods, our approach takes fewer iterations to converge onto the correct pose estimate. The efficacy of the formulation

is illustrated with a number of examples on standard datasets as well as real-world experiments.

Keywords

Kalman filter, pose estimation, Bingham distribution, registration, Bayes rule

1. Introduction

Several applications in robotics require the estimation of

pose (translation and orientation) between a model frame

and a sensor frame. Examples include medical image reg-

istration (Moghari and Abolmaesumi, 2007), manipulation

(Engelhard et al., 2011), hand–eye calibration (Faion et al.,

2012), and navigation (Engelhard et al., 2011). Filtering-

based online pose estimation techniques have particularly

been a popular choice due to their ability to adapt to noisy

sensor measurements. Most of the prior work on online pose

estimation linearize the nonlinear measurement model. This

results in inaccurate estimates especially when the initial

pose estimate is erroneous. To address this issue, recently

Srivatsan et al. (2016) used dual quaternions and developed

a linear Kalman filter that is robust to initial pose errors.

In this work, a Bingham distribution is used to model the

uncertainty in the rotation parameters, and a linear mea-

surement model is adapted from Srivatsan et al. (2016) to

develop a linear filter for online pose estimation.

Gaussian distributions can be used to model uncertainty,

but are largely limited to linear spaces and states that are

unimodal in distribution. Although much work has been

done to counteract this assumption, the bottom line is that

linearizations are still approximations. We believe that to

obtain optimal state estimates, it is critical to model uncer-

tainties using the appropriate distributions that exploit the

fundamental structure of the parameter space. Our prior

work (Srivatsan et al., 2016), as well as the work of others

(LaViola Jr, 2003; Marins et al., 2001), used unit quater-

nions as the underlying space and Gaussians to model the

uncertainty in their distribution. Gaussian distributions do

not consider the structure of the underlying space, i.e.,

antipodal symmetry introduced by q̃ = −̃q (Kurz et al.,

2013). This work introduces an online pose estimation

method that uses a Bingham distribution and a Gaussian

distribution to robustly and accurately estimate the rotation

and translation respectively.

The Bingham distribution is defined on a unit hyper-

sphere and captures the antipodal symmetry of the distri-

bution of unit quaternions (Bingham, 1974) (see Figure

1). When compared with prior methods, the use of the
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Fig. 1. A 3D Bingham distribution: c = 1
N exp( vTMZMTv), where M = I3×3, Z = diag( 0, −0.5, −2), and v =( x, y, z)T, vTv = 1.

The colors on the sphere show the probability value. (a) Mode at v =( 1, 0, 0)T and (b) mode at v =( −1, 0, 0)T. More details can be

obtained from Section 3.2.

Bingham distribution results in a formulation that is accu-

rate and has shorter computation time, because there is no

normalization step or projection onto a hyper-sphere.

Another advantage of our approach compared with exist-

ing methods (Moghari and Abolmaesumi, 2007; Pennec and

Thirion, 1997; Srivatsan et al., 2016) is the ability to update

the pose not only using point measurements, but also using

surface-normal and pose measurements as well as simul-

taneous multiple measurements (as obtained from a stereo

camera or lidar). We extend our previous work on Bingham

distribution-based filter (Srivatsan et al., 2017) by develop-

ing a filter that uses pose measurements, for applications

such as hand–eye calibration (Ackerman et al., 2013; Faion

et al., 2012).

Inspired by Horn (1987), this work estimates pose by

decoupling orientation from translation estimation. The

method uses a Bingham distribution-based filtering (BF)

for orientation estimation and a Kalman filter for transla-

tion estimation. Although there has been some recent work

on using the BF for orientation estimation (Gilitschenski

et al., 2016; Kurz et al., 2013), there are some key dif-

ferences compared with our approach. First, prior work

assumes that the state and measurements both are unit

quaternions. Second, prior works deal with nonlinear mea-

surement models (Lefebvre et al., 2002), hence requiring

approximations introduced by linearization or determin-

istic sampling such as Steinbring and Hanebeck (2013),

Gilitschenski et al. (2016). This results in computation of

the normalization constant which is known to be expen-

sive (Glover et al., 2012; Kurz et al., 2013). On the other

hand, our approach does not limit measurements to be unit

quaternions and bypasses the computation of normalization

constant by using a linear measurement model. The compu-

tation of normalization constant would still be required to

find the covariance of the orientation parameters, which is

not part of the algorithm itself.

Faugeras and Hebert (1986) and Walker et al. (1991)

have also derived linear models for pose estimation. How-

ever, they estimate pose in a deterministic setting and do

not provide any guidelines for estimating the uncertainties

associated with pose. Following Choukroun et al. (2006)

and Srivatsan et al. (2016), in this work we use results from

stochastic filtering theory to derive exact expressions for the

pose uncertainties.

We first derive the theory for applications where the data

association between the model and the sensor measure-

ments is known. Following this, we extend the approach to

applications with unknown data association. To deal with

unknown data association, we use k-d tree search (Besl and

McKay, 1992) and principal-direction tree (PD-tree) search

(Verma et al., 2009) in our prior work (Srivatsan et al.,

2017). As an extension to our prior work (Srivatsan et al.,

2017), in this work we introduce a new look-up table-based

approach for fast computations when the data association

is unknown. We show that the computational time taken

by this approach is a couple of orders of magnitude less

than tree search. Although our prior work only considered

static pose estimation, in this work we take advantage of the

reduced computational time to recursively run the filter for

dynamic pose estimation.

This paper is an improved and extended version of our

prior work (Srivatsan et al., 2017). These improvements

include a more detailed discussion on the derivation of

the equations for the linear filter including some visualiza-

tions to provide intuition in the appendix. We extend our

prior formulation to use pose measurements in addition to

point and surface normal measurements in Section 4. We

present a new approach to deal with unknown data associa-

tion in Section 4.4. Compared with Srivatsan et al. (2017),

we provide comparison with several state-of-the-art meth-

ods for simulation and real-world experiments in Section

5. Although this work focuses on static pose estimation,
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the ideas presented can be adapted to dynamic pose esti-

mation. We present some preliminary results for dynamic

pose estimation in Section 5.2.4.

2. Related work

2.1. Batch processing approaches

Pose estimation has been of interest for a long time in the

robotics literature. Much of the early literature deals with

collecting all sensor measurements and processing them

offline in a batch to estimate the pose. Horn (1987) devel-

oped a least-squares implementation for pose estimation

with known point correspondence. Besl and McKay (1992)

introduced the iterative closest point (ICP), which extends

Horn’s methods for unknown point correspondence by iter-

atively estimating point correspondence and performing

least-squares optimization. Several variants of the ICP have

been developed (Izatt et al., 2017; Rusinkiewicz and Levoy,

2001; Yang et al., 2013; Zhou et al., 2016). Estépar et al.

(2004), Segal et al. (2009), and Billings et al. (2015) further

generalized the ICP by incorporating measurement noise

uncertainties.

Orientation data (surface normals) has been used in

addition to point data for registration in prior works.

The approach of Pulli (1999) uses surface-normal infor-

mation to filter out measurements during the correspon-

dence stage. Münch et al. (2010) used point and surface-

normal measurements in both the correspondence and min-

imization step. Billings and Taylor (2014) have recently

developed iterative most likely oriented point registration

(IMLOP), a probabilistic framework to estimate pose using

surface-normal and position measurements, incorporating

measurement uncertainty in both the correspondence and

minimization step.

In addition to point and surface-normal measurements

there have also been several approaches developed for

pose estimation using pose measurements for applications

such as hand–eye calibration. The works of Tsai and

Lenz (1989), Horaud and Dornaika (1995), and Daniilidis

(1999) formulate hand–eye calibration as a least-squares

estimation problem assuming complete knowledge of mea-

surement correspondence. More recently, Ackerman et al.

(2013) estimate the pose with unknown correspondence.

2.2. Probabilistic sequential estimation

Probabilistic sequential estimation approaches provide

sequential state updates based on a continuous stream of

sensor measurements. The uncertainty in the state variables

is often modeled using probability density functions (PDFs)

and the parameters of the PDF are updated after each mea-

surement. In contrast to batch estimation methods, where

there is no indication of when to stop collecting measure-

ments, convergence of the state estimate and decrease in the

state uncertainty provides clear indication of when to stop

collecting measurements.

2.2.1. Gaussian filtering approaches. Several sequential

estimation methods are based on Kalman filters, which

model the states and measurements using Gaussian distri-

butions (Faion et al., 2012; Hauberg et al., 2013; Moghari

and Abolmaesumi, 2007; Pennec and Thirion, 1997;

Srivatsan et al., 2016). Kalman filters by construction pro-

vide optimal state estimates when the process and measure-

ment models are linear and the states and measurements

are Gaussian distributed (Kalman, 1960). Pose estimation,

however, is inherently a nonlinear problem, and hence lin-

ear Kalman filters produce poor estimates (Hauberg et al.,

2013; Pennec and Thirion, 1997). Several variants of the

Kalman filter have been introduced to handle the nonlin-

earity. Extended Kalman filter (EKF)-based filters perform

first-order linear approximations of the nonlinear models

and produce estimates that are known to diverge in the pres-

ence of high initial estimation errors (Moghari and Abol-

maesumi, 2007). Unscented Kalman filter (UKF)-based

methods do not linearize the models but instead utilize eval-

uation at multiple points, which can be expensive for a high-

dimensional system such as SE( 3) (Hauberg et al., 2013;

Moghari and Abolmaesumi, 2007). In addition, UKF-based

methods require tuning a number of parameters, which can

be unintuitive.

2.2.2. Non-Gaussian filtering approaches. There has been

some recent work in robotics towards the use of alternative

distributions to model the noise on rotations for pose esti-

mation problems. For example, Langevin distributions have

been used for pose estimation by Carlone and Censi (2014)

and Rosen et al. (2016). Gilitschenski et al. (2016) have

recently developed a Bingham distribution-based recursive

filtering approach for orientation estimation. Glover et al.

(2012) used Bingham distribution to describe the orien-

tation features, whereas Gilitschenski et al. (2014) used

this distribution for planar pose estimation. Our work takes

inspiration from these works for modeling the uncertainty

in the orientation using Bingham distribution. In a more

recent work, Fan et al. (2017) used a constrained Kalman

filter with dual quaternions as state vector. Although the

authors do not explicitly mention the use of Bingham dis-

tribution, the update equations of the constrained Kalman

filter are identical to the use of a Bingham filter as shown

by Srivatsan et al. (2017).

The use of Bingham distributions to model uncertainties

in rotation parameters is a very valuable tool that has been

largely under-utilized by the robotics community, as also

noted by Glover et al. (2012). One of the important reasons

for this is the difficulty in computing the normalization con-

stant as well as performing expensive convolution operation

over the distributions (Bingham, 1974).

2.2.3. Alternate parameterizations for filtering. Prior work

also has looked at several parameterizations of SE( 3) that

would improve the performance of the filters. Hauberg et al.
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(2013) confined the state variables over a known Rieman-

nian manifold and use a UKF to estimate the pose. Quater-

nions are used to parametrize SO( 3) and the state is esti-

mated using an EKF in Marins et al. (2001) and UKF in

LaViola Jr (2003). An iterated EKF with dual quaternions

to parameterize the pose has been used in Goddard and

Abidi (1998).

2.2.4. Linear filtering approach. Srivatsan et al. (2016)

have recently developed a linear Kalman filter for pose esti-

mation using dual quaternions and pairwise measurement

update. Although this method has been shown to be robust

to errors in initial state estimate and sensor noise, it has

a few drawbacks. (1) The uncertainty in the quaternions

used for orientation estimate is modeled using Gaussians

that do not consider the condition that q̃ and −̃q represent

the same rotation. (2) The filter by itself does not produce

unit-quaternion estimates and, hence, after each estimate,

a projection step is used to normalize the state. The projec-

tion step introduces an additional error that is not accounted

for in the uncertainty estimate (Julier and LaViola, 2007).

In addition, such a projection would have a large error if

the estimated state had a near zero norm. (3) The approach

only requires pairs of measurements per update. However,

in many practical applications such as image registration,

several ( ≈ 104) measurements are available for processing

in each update step, and a pairwise update could be very

inefficient and time consuming.

3. Mathematical background

Before going into the description of the linear filter for pose

estimation, we provide a brief introduction to the concepts

of quaternions and the Bingham distribution.

3.1. Quaternions

Although there are many representations for SO( 3) ele-

ments such as Euler angles, Rodrigues parameters, and axis

angles, in this work we use unit quaternions. We prefer

the quaternions because their elements vary continuously

over the unit sphere S3 as the orientation changes, avoid-

ing discontinuous jumps (inherent to three-dimensional

parameterizations).

A quaternion q̃ is a 4-tuple:

q̃ =( q0, q1, q2, q3)T , q̃ ∈ R
4

where q0 is the scalar part and vec (̃q) = q =

( q1, q2, q3)T is the vector part of the quaternion.

Sometimes an alternate convention is used where

q̃ =( q1, q2, q3, q0) =( vec( q̃) , scalar( q̃) ) (Bingham,

1974).

3.1.1. Quaternion multiplication. Multiplication of two

quaternions p̃ and q̃ is given by

p̃ � q̃ =

[
p0 −pT

p p× + p0I3

]

︸ ︷︷ ︸
F1 (̃p)

q =

[
q0 −qT

q −q× + q0I3

]

︸ ︷︷ ︸
F2 (̃q)

p (1)

where � is the quaternion multiplication operator and [v]×

is the skew-symmetric matrix formed from the vector v.

3.1.2. Quaternion conjugate. Given a quaternion q̃, its

conjugate q̃∗ can be written as

q̃∗ =( q0, −q1, −q2, −q3)T (2)

The norm of a quaternion is

‖̃q‖ =
√

scalar( q̃ � q̃∗) (3)

3.1.3. Unit quaternions. A unit quaternion is one with

‖̃q‖ = 1. Unit quaternions can be used to represent rota-

tion about an axis (denoted by the unit vector k) by an angle

θ ∈ [−π ,π ] as follows

q̃ =

(
cos

(
θ

2

)
, kT sin

(
θ

2

))T

(4)

As rotating about k axis by θ is the same as rotating about

−k axis by −θ , q̃ and −̃q both represent the same rotation.

3.1.4. Rotation using quaternions. A point b can be

rotated by a quaternion q̃ to obtain a new point a as shown,

ã = q̃ � b̃ � q̃∗ (5)

where ã =( 0, aT)T and b̃ =( 0, bT)T are quaternion repre-

sentations of a, b respectively.

3.2. Bingham distribution

The Bingham distribution was introduced by Bingham

(1974) as an extension of the Gaussian distribution, con-

ditioned to lie on the surface of a unit hyper-sphere. The

Bingham distribution is widely used in analyzing palaeo-

magnetic data (Kunze and Schaeben, 2004; Onstott, 1980),

computer vision (Haines and Wilson, 2008), and direc-

tional statistics (Bingham, 1974) and recently in robotics

(Gilitschenski et al., 2014, 2016; Glover et al., 2012; Kurz

et al., 2013).

Definition 1. Let Sd−1 = {x ∈ R
d : ‖x‖ = 1} ⊂ R

d be

the unit hypersphere in R
d . The probability density function

f : Sd−1 → R of a Bingham distribution is given by

f ( x) =
1

N
exp( xTMZMTx)

where M ∈ R
d×d is an orthogonal matrix ( MMT =

MTM = Id×d), Z = diag( z1, . . . , zd) ∈ R
d×d with z1 ≥

z2 ≥ · · · ≥ zd , is known as the concentration matrix, and N

is a normalization constant.
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3.2.1. Mode of the distribution. It can be shown that

adding a multiple of the identity matrix Id×d to Z does not

change the distribution (Bingham, 1974):

f1( x) =
1

N1

exp( xTM( Z + λI) MTx)

=
1

N1

exp( xTMZMTx) exp( xTM( λI) MTx)

=
1

N1

exp( xTMZMTx) exp( λxTMMTx)

=
1

N
exp( xTMZMTx) = f ( x)

where N =
N1

exp(λ)
, xTx = 1, and MMT = I .

Thus, we conveniently force the first entry of Z to be zero

(Bingham, 1974). Because it is possible to swap columns

of M and the corresponding diagonal entries in Z without

changing the distribution, we can enforce z1 ≥ · · · ≥ zd ,

where z1 = 0. This representation allows us to obtain the

mode of the distribution very easily by taking the first col-

umn of M . The proof for this is shown below. The mode of

f ( x) is given by

x∗ = argmax
x

f ( x) , subject to |x| = 1

= argmax
x

xTMZMTx − λ( xTx − 1)

where λ is the Lagrangian multiplier. Here x∗ is obtained by

solving for x from the following,

∂

∂x

(
xTMZMTx − λ( xTx − 1)

)
= 0

⇒MZMTx − λx = 0

Thus, the Lagrangian multiplier λ is the largest eigenvalue

and x∗ is the eigenvector corresponding to the largest eigen-

value of MZMT. From the construction of Z, the largest

eigenvalue is zero (which appears in the first column of Z)

and the corresponding eigenvector is the first column of M .

Note that sometimes an alternate convention is used in

literature, wherein Z is chosen such that the last entry of Z

is zero and the last column of M is chosen as the mode of

the distribution (Kurz et al., 2013; Bingham, 1974).

3.2.2. Normalization constant. The normalization con-

stant N is given by

N =

∫

Sd−1
exp( xTMZMTx) dx

=

∫

Sd−1
exp( sTZs) ds

The matrix M does not affect the normalization constant

(Bingham, 1974). An intuition for the same is that Z is an

indicator of the spread of the distribution around the modes

and M is an indicator of the location of the modes and

the direction of the dispersion with respect to the modes.

Fig. 2. Two Bingham distributions with Z =

diag( 0, −0.5, −2), (a) M =

(
0.5322 −0.4953 −0.6866
0.7747 0.6120 0.1591
0.3415 −0.6166 0.7094

)
, (b)

M =

(
0.2603 −0.6941 −0.6712
0.6578 0.6364 −0.4029
0.7068 −0.3366 0.6222

)

Hence, for a given Z, changing M results in an identi-

cal distribution with a different location of the modes and

orientation of the dispersion, which does not affect the inte-

gration. Figure 2 shows two choices of M with the same Z

that results in identical Bingham distributions that appear to

be rotated with respect to each other.

Computation of the normalization constant is difficult

and often one resorts to some form of approximation such

as saddle point approximations or precomputed lookup

tables (see Glover et al., 2012 and the references therein).

3.2.3. Antipodal symmetry. An example of the PDF for

two dimensions ( d = 3) is shown in Figure 1. The PDF

is antipodally symmetric, i.e., f ( x) = f ( −x) holds for all

x ∈ Sd−1. The antipodal symmetry is important when deal-

ing with distribution of unit quaternions, because the q̃ and

−̃q describe the same rotation. The Bingham distribution

with d = 4 is used to describe the uncertainty in the space

of the unit quaternions.

3.2.4. Product of two Bingham densities. Similar to a

Gaussian, the product of two Bingham PDFs is a Bing-

ham distribution, which can be rescaled to form a PDF

(Kurz et al., 2013). Consider two Bingham distributions

fi( x) = 1
Ni

exp
(
xTM iZ iM

T
i x
)
, i = 1, 2. Then,

f1( x) ·f2( x)

=
1

N1N2

exp( xT
(
M1Z1MT

1 + M2Z2MT
2

)
︸ ︷︷ ︸

A

x)

∝
1

N
exp

(
xTMZMTx

)
(6)

where N is the new normalization constant after renormal-

ization, M is composed of the unit eigenvectors of A. Z =

D − D11Id×d where D has the eigenvalues of A (sorted in

descending order) and D11 refers to the largest eigenvalue.

3.2.5. Calculating the covariance. Even though a Bing-

ham distributed random vector x only takes values on the



Srivatsan et al. 1615

unit hyper-sphere, it is still possible to compute a covariance

matrix in R
d (Kurz et al., 2013), which is given by

Cov( x) = E( x2) −E( x)2 (7)

= M

(
diag

(
∂N(Z)

∂z1

N( Z)
, · · · ,

∂N(Z)

∂zd

N( Z)

))
MT (8)

This is equivalently the covariance of a normally distributed

x sampled from N

(
0, −0.5

(
M( Z + λI) MT

)−1
)

, given

|x| = 1, where λ ∈ R can be arbitrarily chosen as long

as (Z + λI) is negative definite (Gilitschenski et al., 2016).

Figure 3 shows two choices of λ resulting in the same Bing-

ham distribution. Without loss of generality λ = min( zi) is

chosen in this work.

3.2.6. Composition of two Bingham distributions. Com-

position can be useful when we want to disturb a system,

whose uncertainties are modeled with a Bingham distribu-

tion, with a Bingham distributed noise. Unfortunately, the

Bingham distribution is not closed under composition and

we can only approximate the composition as a Bingham

(Bingham, 1974). Although the authors are not aware of

a general approach for composing n-dimensional Bingham

distributions, for the case of S1 and S3, prior work provides

a method for finding the parameters of the approximate

Bingham distribution obtained by composition (Glover and

Kaelbling, 2013; Kurz et al., 2013).

4. Problem Formulation

In this work we consider pose estimation applications that

use– 1) position measurements, 2) position and surface-

normal measurements, and 3) pose measurements. We

derive linear models for all these cases in this section

assuming the data association between the model and the

sensor measurements is known. Following that we shall dis-

cuss the extension of our approach to applications where the

data association is unknown.

4.1. Position Measurements

Let ai, bi ∈ R
3, ( i = 1, . . . , n) be the locations of n points

in two different reference frames whose relative pose is to

be estimated. The relation between points ai and bi, is given

by

ai = Rot( q̃) bi + t, i = 1, . . . , n, (9)

where Rot( q̃) ∈ SO( 3) is the rotation matrix obtained from

the unit quaternion q̃ ∈ R
4 and t ∈ R

3. In an applica-

tion such as point-registration, ai are points in CAD-model

frame and bi are points in sensor frame respectively.

4.1.1. Update Model. First consider the scenario where

points in the sensor frame are obtained one at a time in

a sequential manner, as typically observed in the case of

Fig. 3. (a) A Gaussian distribution: f1( v) = 1
N1

exp( vT

( diag( 0, −3) −1 × I2×2) v). A slice of the Gaussian as made by

points lying on a unit circle is shown in red. (b) A Bingham dis-

tribution: f2( v) = 1
N2

exp( vTdiag( 0, −3) v). (c) A Gaussian distri-

bution: f3( v) = 1
N3

exp( vT( diag( 0, −3) −0.5 × I2×2) v). A slice

of the Gaussian as made by points lying on a unit circle is shown

in red. The slice obtained from the Gaussian distributions in (a)

and (c), when normalized result in the same Bingham distribution

as shown in (b).

robotic probing Srivatsan et al., (2016a). Similar to (Sri-

vatsan et al., 2016), the equations for updating the pose

estimate given a pair of measurements (n = 2), are derived.

From Eq. 5, Eq. 9 can be rewritten as

ã1 = q̃ � b̃1 � q̃∗ + t̃, (10)

ã2 = q̃ � b̃2 � q̃∗ + t̃, (11)
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Fig. 4. Blue points (left) indicate ai and red points (right) indicate

bi. Our approach constructs vectors a
ij
v =( ai − aj) and b

ij
v =( bi −

bj) as shown by black arrows. The Bingham filter estimates the

orientation between the black vectors. A standard implementation

of Horn (1987) on the other hand, finds the orientation between the

green-dashed vectors. While the green-dashed vectors can only be

constructed using a batch of measurements, the black vectors can

be constructed from sequential measurements. The black vectors

can be considered to be a special case of green-dashed vectors

where one pair of data points are considered at a time with one of

the points serving as the centroid.

where q̃ is as defined in Eq. 4 and t̃ =( 0, tT )T . Subtracting

Eq. 11 from Eq. 10,

ã1 − ã2 = q̃�( b̃1 − b̃2) �̃q∗,

⇒( ã1 − ã2) �̃q = q̃�( b̃1 − b̃2) , (12)

since q̃ is a unit-quaternion. Using matrix form of quater-

nion multiplication shown in Eq. 1, Eq. 12 can be rewritten

as

F1( ã1 − ã2) q̃ − F2( b̃1 − b̃2) q̃ = 0,

⇒H( a1, a2, b1, b2) q̃ = 0, where (13)

H =

[
0 −( av − bv)T

( av − bv) ( av + bv)×

]
∈ R

4×4, (14)

av = a1 − a2 and bv = b1 − b2. Notice that Eq. 13 is a

linear equation in terms of q̃ and is independent of t.

Adding Eq. 10 and Eq. 11,

ã1 + ã2 = q̃�( b̃1 + b̃2) �̃q∗ + 2̃t,

⇒̃t =
( ã1 + ã2) −̃q�( b̃1 − b̃2) �̃q∗

2
. (15)

Eq. 13 and Eq. 15 were derived in Srivatsan et al. (2016a)

using dual quaternions, however, no geometrical intuition

was provided. Fig. 4 provides the geometrical intuition

behind the decoupled estimation of q̃ and t. Estimating the

pose between ai and bi can be reduced to first estimating

the orientation of vectors a
ij
v and bij

v and then estimating

the translation between the centroids of the points. A sim-

ilar idea is commonly used by Horn (1987). A key differ-

ence is that instead of forming vectors av = a1 − a2 and

bv = b1 − b2, Horn’s method uses av = a1 − ac and

bv = b1 − bc, where ac and bc are the centroids of ai and bi

respectively.

Further, Eq. 13 is similar to the one used by Faugeras

and Hebert (1986). However, in Faugeras and Hebert (1986)

uncertainties in sensor measurements were not considered

while estimating q̃. In this work, we model the uncertainty

in the sensor measurements ai, bi using Gaussian distribu-

tion. Let as
i = ai + δai and bs

i = bi + δbi, where ( ·)s is a

sensor measurement, and δ( ·) is the noise as sampled from

a zero mean Gaussian, N ( 0, 6(·)). Eq. 13 can be rewritten

as

H( a1, a2, b1, b2) q̃ = 0,

H( as
1, as

2, bs
1, bs

2) q̃ + G( q̃) µ = 0, (16)

where µ =( δa1, δa2, δb1, δb2)T and

G =
[
−W 1 W 1 W 2 −W 2

]
, (17)

where W 1, W 2 ∈ R
4×3 are comprised of the last three

columns of F2( q̃) and F1( q̃) respectively.

It can be shown that G( q̃) µ is a zero mean Gaussian

noise, N ( 0, Q), where the uncertainty Q is obtained ana-

lytically. To evaluate Q, we make use of an important result

from stochastic filtering theory which is described in Propo-

sition 1 (pp. 90–91 of Jazwinski (2007) and Appendix A

of Choukroun et al. (2006)). For the sake of complete-

ness, we prove the proposition in the Appendix A. We also

provide a couple of examples that illustrate this proposition.

It is to be noted that Proposition 1 uses uncertainty in q̃

to evaluate Q. If no prior information about the uncertainty

of q̃ is available, then

Q = G( q̃) 6µG( q̃)T . (18)

4.1.2. Linear Filter. In order to obtain an estimate of q̃

from Eq. 13, we use a Bingham distribution to model the

uncertainty in q̃,

p( q̃) =
1

N1

exp( q̃T Mk−1Zk−1MT
k−1︸ ︷︷ ︸

D1

q̃) . (19)

If the pose was changing with time, then a suitable pro-

cess model can be employed as shown in Gilitschenski et al.

(2016). For now we restrict the analysis to static pose esti-

mation and hence do not consider a process model to evolve

the pose estimate over time. Position measurements are

obtained, which are in turn used to update the pose estimate.

The pose is updated once for every pair of measurements

received. The following is the probability of obtaining a

sensor measurement zk , given the state q̃k ,

p( zk |̃qk) =
1

N2

exp

(
−

1

2
( zk − h( q̃k) )T Q−1

k ( zk − h( q̃k) )

)
,

(20)
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where h( q̃k) is the expected sensor measurement and Qk

is the measurement uncertainty. Qk is obtained as shown

earlier from Proposition 1. Since Qk is dependent on the

state q̃, we use the current best estimate q̃k−1 to estimate the

uncertainty Qk .

From Eq. 16, we set the measurement to zk = 0 and

measurement model to h( q̃k) = Hq̃k . In a Bayesian update,

the state q̃k is updated such that the predicted measurement

Hq̃k is close to the actual measurement zk . Setting zk = 0

ensures that the state q̃k is updated so that Hq̃k = zk = 0

(as required from Eq. 16).

Since zk = 0 is not a true measurement, it is often

referred to as pseudo-measurement in literature (Richards

(1995)). For a detailed discussion on deriving update equa-

tions using a linear pseudo-measurement model, refer

to Chia et al., (1991); Julier and LaViola (2007). Eq. 20

can be rewritten for our case as,

p( zk |̃qk) =
1

N2

exp

(
−

1

2
( Hq̃k)T Q−1

k ( Hq̃k)

)
,

=
1

N2

exp
(
q̃T

k D2̃qk

)
,

where D2 = 1
2

(
−HT Q−1

k H
)
. Since Qk is a positive definite

matrix (as required by a Gaussian), D2 is a negative definite

matrix. Since D2 is negative definite and |̃qT
k | = 1, p( zk |̃qk)

is an unnormalized Bingham distribution in q̃k . Note that

we assumed the PDF p( zk |̃qk) to be a Gaussian distribution

in zk , and the algebraic simplification results in the PDF

being a Bingham distribution in q̃k . Also note that we can

use eigen decomposition to obtain parameters of the Bing-

ham distribution D2 = M2Z2MT
2 . The parameters M2 and

Z2 are not to be confused as being equal to H and Qk , due

to the similarity in the form of the equations.

Assuming the measurements are all independent of each

other, the updated state given the current state estimate and

measurement can be obtained by applying Bayes rule

p( q̃k|zk) ∝ p( q̃k) p( zk |̃qk)

∝
1

N1

exp
(
q̃T

k D1̃qk

) 1

N2

exp
(
q̃T

k D2̃qk

)
(21)

∝ exp
(
q̃T

k MkZkMT
k q̃k

)
. (22)

And thus it can be seen that the maximum a posteriori esti-

mate, p( q̃k|zk), is a Bingham distribution, where MkZkMT
k

is obtained from the product of Binghams as shown in Eq. 6.

As mentioned in Sec. 3.2.4, the mode of the distribution q̃k ,

is the first column of Mk .

It is worth noting that when no prior uncertainty informa-

tion is available, Qk can be obtained from Eq. 18. However,

it can be shown that the rank of Qk (obtained from Eq. 18),

is at most three. But Eq. 20 requires Qk to be invertible.

Thus we assume prior uncertainty of q̃ to be very large in

such cases which would allow us to use Proposition 1 and

obtain an invertible Q. The first few state updates would

not produce meaningful results due to high uncertainty in

q̃. But each update decreases the uncertainty and after a few

updates, the filter starts producing meaningful results.

After updating q̃k , we estimate tk from Eq. 15. The prior

and likelihood of t are

p(t) =
1

N3

exp( −
1

2
( t−tk−1)T (6t

k−1)−1 (t − tk−1) )

p( q̃k , ai, bi|t) =
1

N4

exp( −
1

2
(W 1t − W 1ac + W 2bc)T

R−1
k (W 1t − W 1ac + W 2bc) ) ,

where the derivation for the likelihood and the definition of

Rk , ac, bc are provided in Appendix B.

We obtain tk by finding the maximum aposteriori esti-

mate

tk = argmax
t

p( t)p( q̃k , ai, bi|t) ,

= argmin
t

( t − tk−1)T ( 6t
k−1)−1 ( t − tk−1) +

( W 2t − W 2ac + W 1bc)T R−1
k

( W 2t − W 2ac + W 1bc)

Upon taking a partial derivative with respect to t and setting

it to 0, we get

tk =

((
6t

k−1

)−1
+ W T

1 R−1
k W 1

)−1

((
6t

k−1

)−1
tk−1 + W T

1 R−1
k ( W 1ac − W 2bc)

)
(23)

The covariance 6t
k is obtained from the double derivative

6t
k =

((
6t

k−1

)−1
+ W T

1 R−1
k W 1

)−1

. (24)

The above update equations are identical to Kalman filter-

ing update Kalman (1960). Hence, the state is updated once

for every pair of measurements received, until a conver-

gence condition is reached, or maximum number of updates

is reached.

4.1.3. Simultaneous Multi-measurement Update. So far

we have considered only the case where the state is updated

once per pair of measurements. However, such an approach

can be inefficient when applied to pose estimation from

stereo cameras or Kinect™. In such applications, one typ-

ically obtains several position measurements at each time

instant and processing the measurements in a pairwise

manner can be time consuming. In order to address this

situation, we can rewrite Eq. 13 as:

H j̃q = 0, j = 1, . . . , m.

H j has the form as shown in Eq. 14, where av, bv are

obtained from point-pairs constructed by subtracting ran-

dom pairs of points or subtracting each point from the cen-

troid (similar to Horn (1987)). Since the measurements are
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assumed to be independent, we have

p( zk |̃qk) =

m∏

j=1

1

N
j

2

exp

(
−1

2
( H j̃qk)T q̃−1

k ( H j̃qk)

)
,

=
1

N3

exp( q̃T
k D3̃qk) , (25)

where D3 = 1
2

∑
j

(
−HT

j q̃−1
k H j

)
and N3 =

∏m
j=1 N

j

2. Eq. 21

can be rewritten as

p( q̃k|zk) ∝
1

N1

exp
(
q̃T

k D1̃qk

) 1

N3

exp
(
q̃T

k D3̃qk

)

∝ exp
(
q̃T

k MkZkMT
k q̃k

)
, (26)

where MkZkMT
k is obtained from Bingham multiplication.

q̃k and tk are obtained as shown in Sec. 4.1.2.

4.2. Surface-normal Measurements

In some applications, in addition to position measure-

ments, surface-normal measurements may also be avail-

able (Billings et al. (2015); Srivatsan et al., (2016a)). The

following equation relates the surface-normals in the two

frames,

ña
i = q̃ � ñb

i � q̃∗ i = 1, . . . , l

⇒ña
i � q̃ = q̃ � ñb

i

⇒J ĩq = 0, where

J i =

[
0 −( na

i − nb
i )T

( na
i − nb

i ) ( na
i + nb

i )×

]
,

where na
i are surface-normals in CAD-model frame and

nb
i are surface-normals in the sensor frame. Similar to

the derivation in the case of position measurements (see

Eq. 25), we obtain,

p( zk |̃qk) =
1

N4

exp( q̃T
k D4̃qk) , (27)

where D4 = 1
2

∑
i

(
−JT

i S−1
k J i

)
+ 1

2

∑
j

(
−HT

j q̃−1H j

)
, Sk

is the pseudo-measurement uncertainty. Thus, we have

p( q̃k|zk) ∝
1

N1

exp( q̃T
k D1̃qk)

1

N4

exp( q̃T
k D4̃qk) ,

∝ exp( q̃T
k MkZkMT

k q̃k) .

Instead of using a Gaussian distribution to model the uncer-

tainty in the surface-normal measurements, a von Mises

Fisher distribution may be chosen, as shown by Billings

et al. (2015). For calculating the uncertainties using Propo-

sition 1, the covariance of the von Mises distribution can be

calculated as shown by Hillen et al., (2017).

4.3. Pose Measurements

Systems that use pose measurements for model update typ-

ically have the following general form (Park and Martin

(1994); Ackerman et al. (2013))

AX − XB = 0, (28)

where A, X , B ∈ SE( 3). These problems are generally

referred to as ‘hand-eye calibration’. A and B are pose-

measurements and X is the desired transformation to be

estimated. While variants of this problem exist in the form

of AX = BY (also known as hand-eye robot-world cal-

ibration) (Dornaika and Horaud (1998); Zhuang et al.,

(1994)), these problems can also be reduced to the form

of AX = XB by using relative measurements (Tabb and

Yousef (2015)). Let ãr, b̃
r

∈ R
4 be the unit quaternion

and at, bt ∈ R
3 be the translation, parameterizing A and

B respectively. For Eq. 28, we have

ãr � q̃ − q̃ � b̃
r
= 0, and, (29)

ãt � ãr � q̃ + ãr � t̃ � q̃

−̃t � q̃ � b̃
r
− q̃ � b̃

t
� b̃

r
= 0, (30)

where ãt ,( 0, ( at)T )T , b̃
t
,( 0, ( bt)T )T . From Eq. 29 and

Eq. 1, we obtain

Lr( ãr, b̃
r
) q̃ = 0, where, (31)

Lr( ãr, b̃
r
) = F1( ãr) −F2( b̃

r
) ∈ R

4×4.

Eq. 31 is linear in q̃, as was the case in the previous sections.

Thus we follow a similar analyses to estimate q̃k and the

associated uncertainty.

Once we obtain q̃k , its value is substituted in Eq. 30 and

the terms are rearranged to obtain

Lt( ãr, at, b̃
r
, bt) t̃ + τ̃ 3 = 0, where, (32)

Lt = F1( ãr) −F2( q̃k � b̃
r
� q̃∗

k ) ,

τ̃ 3 = ãt � ãr − q̃k � b̃
t
� b̃

r
� q̃∗

k .

Eq. 32 can be simplified as shown

Ltt + τ 3 = 0,

where Lt is a matrix composed of the last three columns of

Lt.

We use a maximum a priori estimate to obtain tk and 6t
k

similar to Eq. 23 and Eq. 24,

tk =

((
6t

k−1

)−1
+ Lt

T
R−1

k Lt
)−1

((
6t

k−1

)−1
tk−1−( Lt)T R−1

k τ 3

)
, (33)

6t
k =

((
6t

k−1

)−1
+ Lt

T
R−1

k Lt
)−1

, (34)

where the uncertainty Rk can be obtained following steps

similar to those shown in Sec. 4.1.2.

4.4. Dealing with Unknown Data-association

In this section, we discuss the general approach we fol-

low for pose estimation when the data association between

sensor point and the model is unknown. We explain the

approach for the example of position measurements, but
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the general idea can be easily extended for other forms of

measurements.

Let ψ be the model shape that is often available in the

form of a triangulated mesh. Let bs
i ∈ R

3 be the sensor

measurements in the sensor’s reference frame. If we knew

the point on ψ that is associated with bs
i , then we could

follow the approach as shown in Sec. 4.1. However, we do

not know this data association, and so we find the point ai ∈

ψ , such that

ai = argmin
a∈ψ

|a − Rot( q̃k) bs
i − tk|. (35)

This approach is referred to as ‘closest point’ correspon-

dence and is often used in methods such as ICP (Besl and

McKay (1992)). An alternate approach involves using a

probabilistic criteria (‘most likely’ correspondence) instead

of Eq. 35,

ai = argmax
a∈ψ

1

N
exp

(
−

1

2
vT

k Skvk

)
, (36)

= argmin
a∈ψ

vT
k Skvk , (37)

where vk = a − Rot( q̃k) bs
i − tk , and Sk =

Rot( q̃k) 6bs
i Rot( q̃k)T +6a (Billings et al. (2015)). Eq. 36

does not take into account the uncertainty associated with

q̃k and tk . While it is straightforward to estimate the uncer-

tainty in the pose and incorporate in Eq. 36, we suspect

that doing so can result in worse data associations, espe-

cially when the initial pose-uncertainty is very high. Addi-

tionally, both the ‘closest point’ as well as ‘most likely’

paradigms are equivalent when the uncertainties 6bi , 6a are

isotropic (Billings et al. (2015)).

4.4.1. k-d Tree Search: A naive implementation for opti-

mizing Eq. 35 or Eq. 36 would require checking every

point in ψ and find the one that minimizes the objective.

However, such an approach takes O( n) time on an aver-

age, which can be practically infeasible in many situations.

As a result a popular approach to search for the optimal

point in the model involves using a k-d tree (Friedman et

al., (1977)) (see Fig. 5(b)). A k-d tree with n points takes

O( log n) time on an average per search. There are different

ways to build k-d trees depending on which coordinate is

chosen for splitting the data. One often chooses the coordi-

nate with the largest spread. One variant is the dyadic tree

which cycles through the coordinates and splits the data at

the midpoint.There are several other variants of the k-d tree

such as ball tree (Omohundro (1989)), Vantage-point tree

(Yianilos (1993)), etc.

4.4.2. Principal Direction Tree Search: One may also use

a principal direction (PD) tree (Verma et al. (2009)). The

primary difference between the k-d and PD trees is that each

node of the PD tree has a local coordinate system that is

oriented based on the spread of the points in ψ instead of

Fig. 5. (a) Shows a representative point cloud of a model. For ease

of demonstration, we show a 2D case. Let the model have 7 points

as shown by red dots. (b) k-d tree constructed for the model points.

(c) Look-up table approach is illustrated. A grid is created around

the model. The closest point from each grid center to the model

is computed using k-d tree. Each grid-color shows an index cor-

responding to the closest point on the model. Given a new sensor

point, we first transform it to the model frame (using the best esti-

mate of transformation). We then find which grid it belongs to and

return the precomputed closest point.

being axis-aligned with the model’s reference frame. Such a

tree can result in more compact geometric bounds of nodes

within the PD tree and hence provide a boost to the search

efficiency. Billings et al. (2015) use a PD tree search in their
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algorithm and demonstrate improved performance over k-d

tree search. A variant of this method is the random projec-

tion tree (RP tree) (Dasgupta and Freund (2008)). In this

tree a random vector is chosen and the tree is split along

the median of the data projected onto this vector. The RP

tree is computationally faster than PD tree but produces

lower accuracy results. McCartin-Lim et al., (2012) have

developed an approximate PD tree (APD tree) that has the

computational complexity of an RP tree with the accuracy

comparable to a PD tree.

4.4.3. Fast Look-up Table Search: In this work, we have

developed a faster (albeit more approximate) approach to

search for the closest point to the model. We refer to

this approach as ‘look-up table’ approach. As shown in

Fig. 5(c), we use a uniform grid to discretize the space

around the model. We then compute the closest point from

the center of each grid to the model using a k-d tree. The

index of the closest point on the model to each grid point gi

is stored in a look-up table. Such a look-up table needs to be

constructed once before the start of the experiments. When

we obtain a sensor measurement bi, we find the closest grid-

center to
(
Rot( q̃k) bi + tk

)
, and return the corresponding

pre-computed closest point. Since the grid is uniform, the

computation of the closest grid center can be done in O( 1).

Fig. 6. Plot shows the time taken per search vs number of model

points for k-d tree and look up table approach. Irrespective of

the number of model points, the search time with look-up table

approach remains of the same order (≈ 2 × 10−3 ms). k-d tree,

on the other hand, takes 10−1 ms for 10 model points (which is 2

times faster than look-up table) and 0.25 ms for 1 million model

points (which is 100 times slower than look-up table).

We choose a uniform grid in a box, which is three times

the largest dimension of the model, with 100 points in

each dimension. The center of the grid space is chosen to

coincide with the center of the model. An advantage of

this search method is that the closest point computation

is carried offline, and finding the closest grid-center is an

inexpensive operation. Fig. 6 shows that when the model

has > 10, 000 points, the look-up table approach outper-

forms k-d tree by several orders of magnitude1. However,

a shortcoming of this approach is that the density of the

grid dictates the accuracy of the result, because every point

inside each grid is assigned the same closest point. Increas-

ing the density of the grid would result in more accurate

results at the cost of increase memory storage to save the

lookup table.

It is interesting to note that Fig. 5 is actually a grid

approximation of the Voronoi diagram of the model points.

The grid approximation allows for quick retrieval of closest

point, as opposed to saving the Voronoi cells and checking

for which Voronoi cell a given point belongs to.

5. Results

In this section, we consider two scenarios for using the

Bingham distribution-based linear filter: (1) known data

association and (2) unknown data association. Without loss

of generality, we choose the following values for all exper-

iments, M0 = I4×4, Z0 = diag( 0, −1, −1, −1) ×10−300

which represents an uninformative prior with high initial

uncertainty.

5.1. Known data association

5.1.1. Simulation example: point cloud registration. In

this section, we assume that the correspondence between

points ai ∈ R
3 and bi ∈ R

3 are known, and estimate the

pose between the frames that these two point sets lie in.

The coordinates of the dataset as
i are produced

by drawing 100 points uniformly in the interval

[−250 mm, 250 mm]. To create the noiseless dataset

bi, a random transformation is applied to ai. This transfor-

mation is generated by uniformly drawing the rotational

and translational parameters in the intervals [−180◦, 180◦]

and [−100 mm, 100 mm], respectively. In Experiment 1,

no noise is added to bi. In Experiment 2 and Experi-

ment 3, a noise uniformly drawn from [−2 mm, 2 mm]

and [−10 mm, 10 mm], respectively, is added to each

coordinate of bi. In Experiment 4 and Experiment 5,

a Gaussian noise drawn from N ( 0, diag( 2, 2, 2) ) and

N ( 0, diag( 10, 10, 10) ), respectively, is added to each bi.

The linear Bingham filter (BF) is used to estimate the

pose in each of the experiments in a sequential manner. This

procedure is repeated 1000 times with different datasets and

different transformations that are randomly generated. The

results are compared with dual quaternion filter (DQF) (Sri-

vatsan et al., 2016), Moghari-UKF (Moghari and Abolmae-

sumi, 2007), and Pennec-EKF (Pennec and Thirion, 1997).

We also compare the results with an incremental variant of

Horn’s method (Horn-Inc) (Horn, 1987). In this method we

find estimate the pose once for every four measurements

obtained using the estimate from the previous update as an

initial condition.

For each of the methods, if the root-mean-square (RMS)

error at the end of any experiment is greater than 250 mm

(the size of the workspace considered), then we consider

the experiment to have failed. The average RMS errors

1. The time reported is for a script written in MATLAB R2017b soft-

ware from MathWorks, running on a ThinkPad T450s computer with 8

GB RAM and intel i7 processor.
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Fig. 7. Histogram shows the RMS errors for the Bingham filter (BF), dual quaternion filter of Srivatsan et al. (2016) (DQF), UKF

of Moghari and Abolmaesumi (2007) (Moghari-UKF), EKF of Pennec and Thirion (1997) (EKF) and an incremental variant of

Horn’s method (Horn, 1987). (a) The results shown are for Experiment 3, where the sensed points have a noise uniformly drawn

from [−10 mm, 10 mm]. The BF is most accurate with an average RMS error of 10.30 mm and a 100% success rate. (b) The results

shown are for Experiment 5, where the sensed points have a noise obtained from a Gaussian distribution N ( 0, diag( 10, 10, 10) ). The

BF is the most accurate with an average RMS error of 4.95 mm and a 100% success rate.

Table 1. Mean RMS errors for experiments involving three dif-

ferent levels of uniform measurement noise.

Experiment 1 Experiment 2 Experiment 3

RMS Success RMS Success RMS Success

(mm) (%) (mm) (%) (mm) (%)

Our approach 0.00 100 2.06 100 10.30 100

DQF 0.00 100 2.72 99.70 12.17 99.90

Horn-Inc 0.00 100 4.96 97.30 34.80 78.30

Moghari-UKF 15.97 99.50 18.84 99.30 21.00 99.50

Pennec-EKF 74.20 88.20 83.41 83.90 47.312 94.80

over the first three experiments along with the percentage

of successful runs are listed in Table 1. Note that we do

not include failed experiments in our computation of RMS

errors.

Figure 7(a) shows the histogram of errors for Experi-

ment 3. The BF always estimates the pose with the lowest

RMS error. The RMS error of DQF and Moghari-UKF are

both small, but larger than the BF. Owing to the large ini-

tial orientation chosen, they get trapped in local minima

sometimes, which is captured by the bars at higher RMS

errors in Figure 7(a). Whereas Horn-Inc performs better

than Moghari-UKF when the noise is small, higher noise

Table 2. Mean RMS errors for experiments involving two differ-

ent levels of Gaussian noise in the measurements.

Experiment 4 Experiment 5

RMS Success RMS Success

(mm) (%) (mm) (%)

Our approach 0.210 100.00 4.947 100.00

DQF 0.214 100.00 6.980 99.80

Horn-Inc 0.310 100.00 6.651 99.20

Moghari-UKF 15.960 99.40 20.770 99.70

Pennec-EKF 40.480 95.50 44.188 93.90

results in the Horn-Inc performing worse. Pennec-EKF per-

formed the worst in all three experiments. For Experiment

3, the average run time for the BF is 26 ms, compared with

9 ms of DQF, 3.8 ms of Horn-Inc, 130 ms of Moghari-UKF,

and 17 ms of Pennec-EKF.

The average RMS errors for Experiment 4 and Exper-

iment 5 along with the percentage of successful runs are

tabulated in Table 2.

Figure 7(b) shows the histogram of errors for Experiment

3. Although the trend is similar to the case of the first three

experiments, all the approaches perform better than in the

case of uniform noise. This is an expected behavior, because

the filters are developed to handle Gaussian noise in the
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Fig. 8. A spherical tool tip is attached to the da Vinci robot.

The tip is tracked using a stereo camera, which is held in a fixed

position. As the robot is telemanipulated, the spherical tool-tip is

tracked using the stereo camera, and the relative pose between the

camera frame and the robot frame is estimated.

measurements. BF once again is most accurate among all

the methods.

5.1.2. Real-world example: registering camera and robot

frame. Figure 8 shows an arm of a da Vinci® surgical robot

(Intuitive Surgical Inc., Mountain View, CA) mounted on a

table, and a stereo camera (ELP-1MP2CAM001 Dual Lens)

mounted on a rigid stand. The relative pose between the

robot’s frame and the camera’s frame is fixed, and needs to

be estimated. To estimate this pose, the robot is telemanip-

ulated in arbitrary paths and the location of tip of the robot

ai is computed in the camera frame by segmenting the tip

from the stereo image and estimating its center. The posi-

tion of the tip in the robot frame, bi is obtained from the

kinematics of the robot. The pose between the points ai and

bi can be obtained as shown in Section 5.1.

Table 3 shows the RMS error and the time taken for esti-

mation by the Bingham filtering (BF) approach using pair-

wise updates, using 20 simultaneous measurement-pairs per

update (abbreviated as BFM-20 in the table), and an incre-

mental Horn’s method (Horn-Inc) where the pose is esti-

mated once per 20 measurements. We evaluate the results

for three termination criteria.

1. Criterion 1: If the change in the translation and rotation

fall below a set threshold, the algorithm is terminated.

In this example we use 1 mm and 0.1◦ as threshold for

translation and rotation, respectively.

2. Criterion 2: If the conditions of Criteria 1 are satisfied

and the uncertainty in the rotation and translation fall

below a set threshold. In this example, we choose the

threshold for uncertainty in translation as 10−4 for the

largest eigenvalue of 6t
k and −103 for the largest non-

zero diagonal element of Zk .

3. Criterion 3: The algorithms are terminated after pro-

cessing a set number of measurements. In this example

we choose this number n = 200.

We observe that BFM-20 produces more accurate and

faster results than the BF, because multiple simultaneous

measurements help smooth out the effect of the noise in

the measurements. As Horn-Inc does not contain any uncer-

tainty information, results of Criteria 1 and 2 are identical.

Uncertainty update in BFM-20, however, prevents prema-

ture convergence due to Criterion 1 and results in more

accurate estimate with Criterion 2. Instead of converging

after using 28 data points, BFM-20 takes 31 points to

converge according to Criterion 2.

When all three algorithms are run for 200 measurements,

the accuracy of BFM-20 is the highest. Unlike BF and

BFM-20, after processing 200 points, Horn-Inc has a higher

RMS error. This is because in the filtering approaches,

information from previous measurements are “baked” into

the current estimate by the uncertainty update, which is

absent in Horn-Inc. Overall, Horn-Inc takes lowest compu-

tation time and performs better than BF, but produces higher

errors than BFM-20. We also perform a batch optimiza-

tion using all 200 points and Horn’s method (abbreviated

as Horn-Batch in the table), as well as Bingham filter with a

single update using 200 point measurements (abbreviated as

BF-200). Both BFM-200 and Horn-Batch converge to the

same RMS error and take comparable computation time,

with the BFM-200 taking 0.14 ms longer due to additional

computations involving uncertainty update.

We also implement a naive outlier detector for all the

algorithms, except BF. For every mini-batch of measure-

ments used per update, we first apply the current esti-

mate of the pose and sort the measurements bi based on

their proximity to ai. We then pick a fraction of the mea-

surement pairs that are closest and discard the rest (we

choose a fraction of 0.6 in this work). We update using

only this fraction of measurements. Any outlier present in

the current batch of measurements would be discarded in

this process.

As we did not observe many outliers in the experiment,

we created a simulated example to test our approach in a

more challenging case. In this simulation experiment, we

take the measurements from the robot experiment described

above and randomly chose 16% of the points to be outliers.

We then estimate the pose using BFM-20 and Horn-Inc

as shown in Figure 9(b). In the absence of outlier detec-

tion both BFM-20 and Horn-Inc are highly inaccurate due

to the presence of outliers. Upon using outlier detection,

both methods perform well, with the BFM-20 producing

smoother estimates with lower RMS error than Horn-Inc

as shown in Table 4.

5.2. Unknown data association

5.2.1. Simulation example: point-cloud registration. In

this section we assume that the points ai and surface nor-

mals na
i are the vertices and normals, respectively, of a

triangulated mesh. Figure 10 shows the triangulated mesh

in the shape of a bunny (Turk and Levoy, 2005), which has

86,632 triangles.
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Table 3. Experimental results for robot–camera registration.

Criteria 1 Criteria 2 Criteria 3

Time RMS n Time RMS n Time RMS n

(ms) (mm) (ms) (mm) (ms) (mm)

BF 5.81 6.11 53 5.89 6.11 53 25.29 3.34 200

BFM-20 1.53 2.81 28 1.66 2.77 31 29.81 2.74 200

Horn-Inc 0.43 2.84 25 0.43 2.84 25 14.16 2.86 200

BFM-200 — — — — — — 0.67 2.69 200

Horn-Batch — — — - — — 0.53 2.69 200

Table 4. Simulation results for robot–camera registration.

x y z θx θy θz Time RMS

(mm) (mm) (mm) (deg) (deg) (deg) (ms) (mm)

Actual 11.79 261.49 27.29 178.25 7.29 −130.46 — —

BFM-20 11.78 261.45 27.52 178.38 7.33 −130.35 42 2.79

Horn-Inc 20.67 259.21 27.52 177.08 5.73 −131.42 34 3.66

Fig. 9. (a) Experimental results for robot–camera registration.

BFM-20 produces the most accurate pose estimation, whereas

Horn-Inc is the fastest, and BF is the most erroneous. (b) Robot–

camera registration results in the presence of 16% measurement

outliers. In the absence of outlier detection both BFM-20 and

Horn-Inc perform poorly. Outlier detection improves both BFM-

20 and Horn-Inc, with the BFM-20 being smoother and more

accurate.

We randomly pick 5,000 points from the triangulated

mesh and to each coordinate of the points, add a noise

uniformly drawn from [−2 mm, 2 mm]. For each ( bi, nb
i ),

the correspondence is obtained by finding the closest point-

normal pair ( ai, na
i ) on the triangulated mesh.

We estimate the pose using the BF with 20 simultaneous

multi-measurements as described in Section 4.1.3. Figure

11 shows the RMS error vs number of simultaneous mea-

surements used. Update based on one pair of measurements

Fig. 10. (a) Triangulated mesh of Stanford bunny (Turk and

Levoy, 2005) is shown in green. Blue arrows represent initial loca-

tion and red arrows represent estimated location of points and

surface normals. (b) Enlarged view shows that the estimated loca-

tion of points accurately rests on the triangulated mesh and the

estimated direction of the surface normals aligns well with the

local surface normal. The Bingham filter takes 2.4 s in Matlab

and 0.08 s in C++ to estimate the pose.

Fig. 11. RMS error upon convergence versus number of simulta-

neous measurements used. The greater the number of simultane-

ous measurements used, the lower the RMS error.



1624 The International Journal of Robotics Research 37(13-14)

Fig. 12. RMS error in the pose versus number of state updates

as estimated by the Bingham filter using 20 simultaneous position

and normal measurements in each update. The estimate converges

in around 40 iterations.

results in a local optimum (RMS error is ≈ 70 mm as

shown in Figure 11). However, the performance drastically

improves when > 10 simultaneous measurements are used.

The penultimate row of Table 5 shows the pose parame-

ters as estimated by the BFM-20. We also estimate the pose

using 20 simultaneous surface-normal and position mea-

surements (abbreviated as BFN-20 in Table 5). The RMS

error for the BFN-20 is lower than the BFM-20, but the

time taken is higher because of additional computations

in the correspondence step involving surface normals. Fig-

ure 10(a) shows the initial position of the surface normals

and point locations with blue arrows and the BFN-20 esti-

mated surface normals and point locations with a red arrow.

The enlarged view in Figure 10(b) shows that our approach

accurately registers the points as well as aligns the surface

normals to the triangulated mesh.

Table 5 also shows the pose parameters as estimated by

ICP (Besl and McKay, 1992), DQF (Srivatsan and Choset,

2016), Pulli’s method (Pulli, 1999), Go-ICP (Yang et al.,

2013), and IMLOP (Billings and Taylor, 2014). For the sake

of a fair comparison, we use k-d tree search for the cor-

respondence in all the methods except IMLOP. The corre-

spondence criteria of IMLOP does not allow the use of a k-d

tree and the authors use a specialized PD tree search. Go-

ICP takes 0.8 s for estimating the pose parameters. How-

ever, we do not report the time taken for Go-ICP in Table 5

as the code originally supplied by the authors runs in C++

whereas all other algorithms run on Matlab. BFM-20 imple-

mented in Matlab takes less time than Go-ICP and is more

accurate as well. This improvement in accuracy is attributed

to the fact that Go-ICP does not consider uncertainties in

measurements, whereas our approach does.

BFM-20 and BFN-20 are accurate and orders of mag-

nitude faster than all other methods. Figure 12 shows the

RMS error at the end of each update step for BFN-20.

The RMS error reduces to < 0.6 mm at around 40 state

updates. To obtain the same accuracy as DQF and ICP (≈ 2

mm), both BFM-20 and BFN-20 take ≈ 30 state updates,

which takes 0.28 s. The accuracy of Pulli is greater than

ICP because it uses surface-normal information to prune the

correspondence choices, which greatly helps with the reg-

istration. Whereas Go-ICP does not use any surface-normal

information, it performs a global search and, hence, pro-

duces results that are more accurate than ICP and Pulli.

IMLOP uses the point and surface-normal information and

is as accurate as BFN-20 but takes several orders of mag-

nitude more computation time. Furthermore, BFN-20 and

BFM-20 produce serial updates and can be terminated using

a criteria as described in Section 5.1.2. This is not possible

in the case of IMLOP, which is a batch processing method

and uses all the measurements to produce the pose estimate.

5.2.2. Simulation example: comparing k-d tree versus

look-up table. In this section, we evaluate the accuracy and

the time taken for registering points to a model using k-d

tree and look-up table-based approach. For this we con-

sider the Lucy model from Stanford point cloud library

dataset (Turk and Levoy, 2005). The model has 1.2 mil-

lion points. We first scale the model so that it fits within

a cube of size 1 unit. We randomly sample 2,500 points

from this model and add a noise to it that is sampled from

N ( 0, diag( 4, 4, 4) ×10−4). We then apply a known trans-

formation to these points and then try to estimate that trans-

formation using the BFM with 20 simultaneous measure-

ments. The transformation applied is ( 0.01, −0.02, 0.05)

units in translation and ( 10, −10, 25)◦ in rotation about

each axis. We evaluate the performance of our approach

using k-d tree as well as look-up table with varying grid

sizes. The results are shown in Table 6. Note that the time

reported does not include the time taken to construct the k-d

tree or the look-up table.2 As expected the k-d tree performs

the best in terms of accuracy. The look-up table is several

magnitudes of order faster. As we increase the grid density

the accuracy of the look-up table increases as well, whereas

search time remains constant.

5.2.3. Real-world example: point-cloud stitching. Stereo

imaging devices such as the Microsoft Kinect™ offer col-

ored point cloud data (RGB-D: color and depth data), which

is generated using a structured light-based depth sensor.

The Kinect™ is widely used in robot navigation (Khoshel-

ham and Elberink, 2012) and object manipulation (Engel-

hard et al., 2011). In this work, we align a pair of point

cloud data obtained from the Kinect™, using the Bingham

filter, to develop a point-cloud model of the environment. It

is assumed that there is some overlap between the two point

clouds. We demonstrate our approach on RGB-D images

taken from the “Freiburg1-Teddy” dataset of Sturm et al.

(2012). Figure 13(a) and (b) show the snapshots of the

images. Figure 13(d) shows the final model of the room as

generated by our approach. We use 20 simultaneous mea-

surements and the same initial conditions as in the previous

cases. Our approach takes ≈ 0.21 s for estimating pose,

which is twice as fast as ICP which takes ≈ 0.46 s. To

improve the speed we have implemented a C++ version of

the Bingham filter, which takes only ≈ 2 ms.3 The RMS
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Table 5. Results for registration of points and surface normals to the geometric model.

x y z θx θy θz Time RMS

(mm) (mm) (mm) (deg) (deg) (deg) (s) (mm)

Actual 44.83 −50.45 7.15 −12.01 −21.49 −28.14 — —

DQF 44.83 −50.44 7.14 −12.02 −21.48 −28.14 13.21 1.89

ICP 44.52 −49.16 6.32 −9.05 −19.11 −30.40 77.83 2.04

Pulli 44.79 −49.83 6.83 −10.56 −20.50 −29.60 10.23 0.90

Go-ICP 44.69 −50.49 7.86 −12.04 −21.58 −27.83 — 0.72

IMLOP 44.91 −50.39 7.58 −12.01 −21.62 −28.11 472.8 0.32

BFM-20 44.44 −50.60 7.18 −12.66 −21.80 −27.58 0.38 0.41

BFN-20 44.60 −50.59 7.58 −12.01 −21.69 −28.29 2.46 0.32

Table 6. RMS error and time taken to register points to a geometric model with 1.2 million points.

Approach Grid points Time RMS

(s) (mm)

kd tree — 2.62 0.013

Look-up table 20 × 20 × 20 0.004 0.046

Look-up table 40 × 40 × 40 0.004 0.029

Look-up table 100 × 100 × 100 0.004 0.021

Fig. 13. (a), (b) RGB-D images obtained from Kinect™, with

some overlapping region. (c) The point cloud model estimated by

aligning the point clouds in (a) and (b) using the Bingham filter.

The Bingham filter takes 0.21 s to estimate the pose with a RMS

error of 4.4 cm, as opposed to ICP, which takes 0.46 s with a RMS

error of 6 cm.

error of our approach is 4.4 cm, which is of the order of

the accuracy of the sensor itself (Khoshelham and Elberink,

2012) and is better than the RMS error of ICP of 6 cm.

5.2.4. Real-world example: stereo point cloud registra-

tion and tracking. In this section we look at an example

of stereo image registration. The transformation between

camera-frame and model-frame is estimated by registering

the reconstructed point cloud from stereo images with the

geometric model of the object.

As the stereo camera images can consist of a number of

objects, we first manually select the region containing the

object of interest. We then refine the selection using a graph

cut-based image segmentation. We use the variant of the BF

that uses multiple simultaneous point measurements to esti-

mate the pose. As the pose estimation is fast, we repeatedly

estimate the pose even after convergence. This allows us to

track the object in the frame of the camera subject to slow

motions. We use this approach to track three objects with

varying level of geometric complexity: a Stanford bunny,

a pelvis bone, and a prostate. The bunny is geometrically

most expressive and easy to track. The prostate is relatively

symmetric and lacks interesting geometric features and is

the most difficult of the three objects to track.

Figure 14 shows the RMS error over a 60 s time period of

tracking, in which the bunny was moved by a user in arbi-

trary fashion. In the first 15 s, the user provides a region of

interest in the stereo images and segments the object based

on its hue and saturation. The BF then estimates the pose.

Note that between 15 and 50 s, the bunny is being manually

moved and our approach is able to robustly and accurately

track the pose (for example, instances A and B in Figure

14). The RMS error is < 2 mm, most of which can be

attributed to the noise in the stereo point cloud. After about

55 s, the filter produces erroneous pose estimates (for exam-

ple, instance C in Figure 14). This is because the bunny

was moved very quickly and the incremental errors in the

pose estimate resulted in a large difference from one frame

to another and caused the point cloud segmentation to lose

track of which points it was meant to be registering to.
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Fig. 14. Top row: The bunny at three time instances A, B, and C as seen by the left stereo camera. Middle row: The estimated pose of

the bunny, in green, superimposed on the stereo image. Bottom: RMS error versus time, for pose estimation using a Bingham filter, in

an experiment that involved a user moving the bunny in the view of the camera.

Although the BF is able to handle moving objects, the

image segmentation that we had previously been using to

mask the point cloud received from the stereo cameras lim-

ited us to tracking static objects. We had been using simple

a graph cut algorithm to segment our image, which required

user input and could not be updated fast enough to keep up

with the camera framerate. For this work, we augmented

our segmentation by creating an automatic traveling mask.

We begin by creating a mask using graph cut as before and

using this mask for a rough registration. Once we are satis-

fied that the model is roughly registered to the object, we

switch to using the traveling mask. Using the same ren-

dering engine used in the graphical user interface (GUI), a

z-depth buffer of the same size as the camera image is ren-

dered of the camera’s view of the model. This depth buffer

is scaled from 0 to 255 with 0 representing the pixel farthest

from the camera and 255 representing the closest. As empty

pixels are read as infinitely far away they are limited to 0 in

the depth buffer. Using this information, we create a new

mask for our camera image by masking out all pixels with a

depth of zero, effectively creating a cutout of our rendered

model. Because we render the depth buffer every time the

model’s estimated transformation is changed, we create an

image mask that moves along with our model.

We repeat the experiments with 3D printed pelvis and sil-

icone prostate (see Figure 15). In the case of the pelvis, the

RMS error in the first 2 s is around 1.5 mm. After this we

apply a force on the pelvis in order to dislodge it from its

location (see instance B in Figure 15). Upon application of

an external force on the object, the pose estimation becomes

erroneous (≈ 2.7 mm). However, the BF is able to quickly

recover after the movement and within 3 s the RMS error

has been reduced to 1.8 mm (see instance C in Figure 15).

Similarly, in the case of the prostate, the RMS error is ini-

tially around 1 mm (for example, instance D in Figure 15).

We rotate and shift the prostate by about 2 inches in less

than a second at around 17 s (instance E in Figure 15). The

tracking RMS error increases to 2 mm, but it reduces to 0.8

mm in about 3 s.

Although the above experiments on object tracking show

promising results, we have restricted ourselves to using

repeated static pose updates. In theory, one could use a pro-

cess model that better captures the motion of the object,

which we leave for future work.

6. Conclusion and Discussions

In this work, a Bingham distribution-based linear filter (BF)

was developed for online pose estimation. Bingham dis-

tribution captures the bimodal nature of the distribution

of unit quaternions as well as the unit norm constraint.

By adapting the linear measurement model developed by

Srivatsan et al. (2016), a linear Bingham filter has been

developed that updates the pose based on a pair of posi-

tion measurements. Further the filter is extended to process
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Fig. 15. (a) Stereo image-based tracking for a pelvis. Top row shows the left stereo camera image, middle row shows estimated pose

superimposed, and the bottom plot shows the RMS error versus time. At instance B, the pelvis was poked by the user, which results in

erroneous pose estimate. However, the pose estimate recovers to a low RMS error in a few seconds as shown in instance C. (b) Stereo

image-based tracking for a prostate. Top row shows the left stereo camera image, middle row shows estimated pose superimposed and

the bottom plot shows the RMS error versus time. At instance E, the prostate is shifted by about 2 inches in less than a second, and

the Bingham filter loses track of the object. However, the pose estimate recovers to a low RMS error in a few seconds as shown in

instance F.
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surface-normal, pose as well as multiple simultaneous mea-

surements. We demonstrate the efficacy and the versatility

of our approach on a number of application in simula-

tion and real-world experiments. The applications include

sequential point registration, hand–eye calibration, object

tracking, registration of stereo images, and point-cloud

stitching.

It has been shown through simulations and experiments

that the BF is capable of accurate pose estimation with less

computation time compared with state-of-the-art methods.

It is empirically observed that using multiple simultaneous

measurements per update helps avoid local optima, when

the correspondences are unknown. Further, we have devel-

oped a fast approach to data association that is based on

creating a look-up table. This approach produces results that

are several orders of magnitude faster than conventional k-d

tree-based approaches.

One drawback of our approach, as with most filtering-

based approaches, is that the estimate can be trapped in a

local minima when the data association is unknown. Using

a high initial uncertainty and more number of simultane-

ous measurements helps alleviate this problem to an extent.

However, in some applications only pairs of measurements

may be available per update, and the correspondences may

be unknown (for example, probing-based registration). In

such situations, better correspondences using a probabilis-

tic metric as described by Billings et al. (2015), can improve

the estimate. Another approach to resolve this issue is to use

a global optimizer for filtering-based methods (Srivatsan

and Choset, 2016).

Although the focus of this work was static pose estima-

tion, we also demonstrated results for object tracking by

running a series of static pose estimation. In the future, we

plan to develop a process model to capture the dynamics

of the moving object, and utilize an unscented Bingham

filter (Gilitschenski et al., 2016) if this model is nonlin-

ear. Another future direction involves using the estimate

of the concentration matrix of the Bingham distribution to

guide where to collect the next set of measurements that

will improve the pose estimation.
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Notes

1. Here 10−300 is the smallest positive normalized floating-point

number in IEEE® double precision.

2. The results are reported for a C++ implementation running on

a MacBook Air, 1.6 GHz Intel Core i5 processor, 8 GB 1600

MHz DDR3 memory.

3. Source code available at: https://github.com/biorobotics/

bingham_registration/tree/ ros-free
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Appendix A. Covariance of h = G( x) b + c

Proposition 1. Let us consider b ∈ R
m and c ∈ R

n that are

samples obtained from Gaussian distributions, N ( 0, 6b)

and N ( 0, 6c), respectively. Let x ∈ R
l be obtained from

a Gaussian distribution, N ( µx, 6x). Let h ∈ R
n, and

a linear matrix function G( ·) : R
l → R

n×m, such that

h = G( x) b + c. Assume that x, b and c are independent.

Then 6h is given by

6h = G( µx) 6bGT( µx) +N( 6b ~ 6x) NT + 6c (38)

where ~ is the Kronecker product, 6{·} is the uncertainty

associated with {·}, and N ∈ R
n×lm is defined as follows

N , [G1 G2 · · · Gm]

Here Gi ∈ R
n×m is obtained from the following identity,

Gix = G( x) ei

where ei is the unit vector in R
m with 1 at position i and 0

everywhere else.

Example 6.1. Let us apply Proposition 1 to find uncertainty

associated with h = G( x) b + c, where x =( x1, x2)T ∈ R
2.

Let us assume,

6b =

[
0.7 0.01

0.01 4

]

6c =

[
0.7 0.1

0.1 0.2

]

G( x) =

[
x1 −x2

x2 x1

]

µx =( 1, 0)T and 6x =

[
1 0

0 0.1429

]

From Proposition 1, we obtain

6h =

[
1.4723 0.1100

0.1100 4.2773

]
(39)

To verify the accuracy of this covariance, we perform a

Monte Carlo experiment. We generate 100,000 samples of

x, b, and c from their respective distributions. Here h is eval-

uated for each of the samples. We then find the covariance

of the resulting samples of h. The calculated covariance is

6h
MC =

[
1.4741 0.1081

0.1081 4.2757

]
(40)

Note that 6h
MC is similar to 6h.

Example 6.2. Let us apply Proposition 1 to find uncertainty

associated with h = G( x) b + c, where x =( x1, x2)T ∈ R
2,

and |x|=1. Let us assume, the same values for all param-

eters, except 6x. As x is constrained to have a unit norm,

we obtain x from a Bingham distribution, B( M , Z) (instead

of a Gaussian as in the previous example). As the Bingham

distribution is a Gaussian distribution with a unit norm con-

straint as shown in Section 3.2.5 and Figure 3, we demon-

strate with an example that Proposition 1 is valid even when

x is obtained from a Bingham distribution instead of a

Gaussian.

Let M = I2×2 and Z = diag( 0, −30). We first per-

form a Monte Carlo experiment with 100,000 of x, b and c

obtained from their respective distributions. Here h is eval-

uated at each of these samples and are plotted as shown in

Figure 16. Note that the points are distributed in the form of

a Gaussian. The mean of the points is ( 0.005, 0.016)T and

covariance is

6h
MC =

[
1.4551 0.1263

0.1263 4.1624

]
(41)

From Equation (7), 6x = −0.5
(
M (Z + λI)MT

)−1
.

Depending on the value of λ chosen, the value of 6x

changes. We observe that choosing λ = min( zi) results in

a conservative estimate for the covariance. The estimated

covariance is

6h =

[
1.4450 0.1101

0.1101 4.2725

]
(42)
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Fig. 16. PDF contours obtained from the covariance estimated

using Proposition 1: (a) Z = diag( 0, −30); (b) Z = diag( 0, −3).

The black points are samples of h = G( x) b + c obtained from

100,000 Monte Carlo simulations.

Here 6h
MC and 6h are in good agreement with each other.

Figure 16(a) shows PDF contours for the estimated 6h and

the samples from the Monte Carlo simulation. We repeat

this experiment for Z = diag( 0, −3). The PDF contours

as well as 100,000 points obtained from Monte Carlo sim-

ulation as shown in Figure 16(b). Note how the estimated

PDF accurately describes distribution of the point samples

obtained from Monte Carlo simulation.

Appendix B. Estimating the likelihood

of obtaining t

From Equation (15),

t̃ =
( ã1 + ã2) −̃q�( b̃1 − b̃2) �̃q∗

2

=̃ac − q̃ � b̃c � q̃∗

where d̃c =
d̃1+d̃2

2
, d = a, b,

⇒̃t � q̃ = ãc � q̃ − q̃ � b̃c

⇒F2( q̃) t̃ = F2( q̃) ãc − F1( q̃) b̃c from Equation (1)

⇒W 1t = W 1ac − W 2bc (43)

where W 1, W 2 ∈ R
4×3 are the last three columns of F2( q̃)

and F1( q̃), respectively.

From Section 4.1.1, as
i = ai + δai and bs

i = bi + δbi.

Substituting these terms in Equation (43) gives

W 1t − W 1as
c + W 2bs

c + G2( q̃) µ = 0

where µ =( δa1, δa2, δb1, δb2)T and

G2 =
1

2

[
W 1 W 1 −W 2 −W 2

]

As observed earlier in the case of estimation of q̃,

G2( q̃) µ is a zero mean Gaussian noise, N ( 0, R), where

the uncertainty R is obtained analytically similar to the

evaluation of Q from Proposition 1.




