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Abstract— This paper presents a Video Inpainting algorithm
that enables monocular-camera-laser-based pipeline inspection
robots to capture both color and 3D information using only one
video stream. Conventional monocular-camera-laser inspection
methods are limited to capture either 2D color images or 3D
point clouds since the laser tends to overexpose the actual color
of the scanning area. We propose a real-time Video Inpainting
method to solve this problem with minimal hardware needs that
can be easily integrated with conventional pipeline profiling
robots. The algorithm is accelerated by two components: a
lightweight network that directly predicts the complete optical
flow and simplifies the algorithm pipeline, and the Polar co-
ordinate transformation, which significantly reduces the image
processing compexity. Real-world experiments demonstrate that
our online algorithm has comparable or better color estimation
accuracy against state-of-the-art offline algorithms, while is
capable of running at 23 frames per second (FPS) on a laptop
computer with a resolution of 1024×1024 pixels. In addition, we
verify that this method can be used for video pre-processing for
downstream tasks that require high-quality visual inputs, such
as Simultaneously Localization and Mapping (SLAM). To the
best of our knowledge, this is the first real-time Video Inpainting
algorithm that can be used for in-pipe environments, serving
as an important building block for highly compact RGB-D
inspection sensors and robots for the pipeline industry.

I. INTRODUCTION

The U.S. has a large-scale oil and gas transmission net-
work, which has about 1.8 million miles of mainline pipes
by the end of the year 2021 [1]. The number will increase
drastically if we also count service pipelines. These pipes are
suffering from aging, corrosion, rupture, and other types of
damage [2], which eventually cause leakage, fire, and even
explosion. Such incidents can result in significant property
damage, injuries, and loss of life. Thus, it’s crucial to monitor
and evaluate the pipeline status on a regular basis to prevent
these accidents from happening. Currently, the mainstream
solution is to send Closed-Circuit Television (CCTV) robots
into these pipes, which consist of a remote-control mobile
platform and a camera. The streamed-out videos can be used
for image-based damage analysis [3].

However, the lack of 3D structural information makes
CCTV robots hard to perform fine-grained evaluation tasks.
In recent years, an increasing number of robots are equipped
with 3D perception systems, such as stereo cameras, Lidar,
and laser profilometry [4]. The properties of low cost,
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Fig. 1. A laser-camera-based robot is scanning an underground pipe. The
onboard camera captures the laser profiling frames, which are fed into the
Video Inpainting module. The profiling frames and the output inpainted
frames are used for RGB-D pipeline reconstruction. Compared with other
methods, our algorithm runs faster with comparable or better image quality.

compact size, and high scanning accuracy make laser pro-
filometry gains popularity for 3D scanning solutions.

Conventional laser profiling robots only provide either 2D
visual images or monochrome 3D point clouds at a time,
as the projected laser over-saturates the actual pipe color
behind the laser strip. One solution to colorize the point cloud
is to use Infra-Red (IR) laser that does not interfere with
the visible spectrum [5]. This approach needs an additional
IR sensor, which cannot utilize existing laser-camera-based
robot platforms. In our previous work [6], a laser alternating
method is used to generate two video streams from one
camera. That is, one stream turns on the laser to get the
depth information, and the other stream turns off the laser
and captures the color information. This approach, however,
needs specific hardware to synchronize the camera shutter,
the laser projector, and the LEDs and only half of the image
frames can be used to retrieve the depth information.

The proposed algorithm allows us to estimate the actual
pipe color under the laser strip purely by software, as shown
in Fig. 1. This approach can help us design highly com-
pact robots with minimum hardware requirements without
wasting half of the frames to get color information. The



laser strip that blocks the actual pipe color can be viewed
as a corrupted region of a normal visual image without
a laser on it. The task of filling in the corrupted region
of each frame in a video sequence is a Video Inpainting
problem [7]. Our method can inpaint the laser regions at
high throughput and can be used as a plug-and-play pre-
processing module for downstream tasks, such as SLAM.
When using the algorithm online, it runs fast enough to
support robot visual localization; when using it offline, it
can pre-process the recorded data and enable full frame
rate scanning with relatively low computation resources.
Compared with other solutions, for example, projecting an
IR laser, the key advantage of our proposed method is that it
does not require additional sensing or controlling hardware,
thus is easy to upgrade existing robot platforms to enable
RGB-D pipeline scanning capabilities at a low cost.

The main contributions can be summarized as follows:
(1) We are the first to address the in-pipe color estimation
problem with Video Inpainting. (2) A lightweight network
fine-tuned with Unsupervised Learning simplifies existing
algorithms by directly estimating complete in-pipe optical
flow. (3) The Polar coordinate transformation further reduces
computation costs. (4) Experiments in real-world natural
gas pipes demonstrate our method’s efficacy in real-time
operation and supporting demanding downstream tasks.

II. RELATED WORK

A. 3D Pipeline Reconstruction

Geometry information is important to evaluate pipeline
attributes, such as curvature, dents, or cracks. However, depth
sensors that are commonly used in robotic applications may
not be suitable for in-pipe environments. Lidar is commonly
used for tunnel inspection [8], [9], but is not suitable
for pipes because of the insufficient resolution for short-
range sensing. Stereo-camera sensors either only achieve
centimeter-level scanning accuracy [4], or require feature-
rich patterns and perform offline optimization [10]. [11], [12]
uses laser profilometry and achieved sub-millimeter accuracy,
but can’t provide color information. [5] uses an IR laser and
IR camera to scan the pipe and associate color information
from another regular RGB camera. This approach needs two
cameras, which increases the size of the robot so it cannot
navigate through narrower pipes. Also, the robot localization
is achieved by wheel encoders, which may suffer from
drift. One way to reduce drift is to fuse multiple sensors
using SLAM. VLI-SLAM [6] is designed for laser-based 3D
scanning. It is built on a monocular visual-inertial SLAM
algorithm, VINS-Mono [13], but also fuses laser information
to achieve a higher localization accuracy. Our testing robot
is based on VLI-SLAM, as it has a more strict image quality
requirement compared with other downstream tasks.

B. Image and Video Inpainting

In Computer Vision, Image Inpainting is the task of filling
the corrupted region in a given image with reasonable con-
tents. Learning-based methods have outperformed traditional
methods and become mainstream [14]. The task of inpainting

each frame in a video sequence is called Video Inpainting.
Flow-based deep learning methods achieve state-of-the-art
performances [15], [16], [17]. Generally, these methods
first estimate bi-directional optical flows and then propagate
pixels in past and future frames to fill the missing region in
the current frame. The Computer Vision community mainly
focuses on improving the image reconstruction quality, con-
sequently that these methods are not optimized for real-time
applications like SLAM, since they require both past and
future frames, refine the result in multiple iterations and
consume massive memory space. Moreover, the networks are
trained with natural video datasets and do not work well with
in-pipe images. In this work, we aim to provide a lightweight
Video Inpainting solution for pipeline laser profiling robots.

C. Optical Flow Estimation

Optical flow estimation plays an important role in flow-
based Video Inpainting algorithms. [15] and [16] use pre-
trained networks of FlowNetV2 [18] and RAFT [19] for
optical flow estimation, respectively. These optical flow
networks are computationally heavy and cannot be used
for real-time tasks on portable devices. More importantly,
they are trained with synthetic datasets that mimic open-
space natural images with ground truth labels [20], [21],
but perform poorly on in-pipe images. However, it’s hard
to obtain ground truth optical flow of in-pipe images for
fine-tuning. Unsupervised optical flow estimation methods
use image pairs themselves as supervision and do not require
labels [22], [23]. Our work is partially based on a lightweight
flow estimator, FastFlowNet [24], which is fine-tuned with
unsupervised learning on our unlabeled in-pipe dataset.

III. METHOD

A Video Inpainting algorithm must satisfy the following
constraints to be used for online inspection tasks.

• Causality: Only information from previous frames can
be used, as future frames are yet to be captured.

• High resolution: Features within pipes can be very small
and some tasks, like SLAM, require high-resolution
image inputs to effectively track feature points.

• Real-time processing speed: VLI-SLAM requires a min-
imum of 10 FPS to operate, which needs to be achieved
on a laptop computer for field deployment.

This section describes the algorithm design for fulfilling
the above-mentioned constraints. Sec. III-A overviews the
Video Inpainting algorithm pipeline. Sec. III-B expands upon
the training details for the deep flow estimator. Sec. III-C
uses VLI-SLAM as an example to explain how the algorithm
is integrated with downstream tasks.

A. Algorithm Overview

We design the real-time Video Inpainting algorithm based
on a classic Flow-based method, Deep Flow-Guided Video
Inpainting (DFGV) [15], which has three major components:
a flow estimator, a flow completion network, and an Image
Inpainting network. Several changes are made for the real-
time requirement: First, the bi-directional flow estimation
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Fig. 2. Overview of the proposed video inpainting algorithm. I , M , F , z and O represent the input image, mask, optical flow, latent feature pyramid,
and output image, respectively. The subscript i and i− 1 represent the current (i-th) frame and the previous frame. The superscript c and p represent the
Cartesian and the Polar coordinate. The number badges indicate the correspondence between the data symbols and the actual images. The images in the
Polar coordinate are rotated by 90 degrees for better visualization ( 2⃝- 7⃝). The FastFlowNet is modified to input and output latent feature pyramids to
save redundant computes, as visualized in the dashed box.

is replaced with unidirectional, as we can only utilize the
past information. Second, the Image Inpainting network
is removed. As the robot always moves along the pipe
axial direction, all the corrupted pixels should be visible
in previous frames, so that single-frame Image Inpainting
becomes unnecessary. Last, the multi-iteration refinement is
changed to single-pass for inference efficiency.

The proposed algorithm pipeline has the following core
operations: coordinate transformation, laser mask extraction,
optical flow estimation, and flow warping, as shown in Fig. 2.
The input is an image pair of the current frame Ici and
the previous frame Ici−1. Our goal is to estimate the color
behind the red laser so that the output frame Oc

i should be
an image without the laser. Because the raw image from
the sensor is black on the sides caused by the fish-eye lens,
the input image is center cropped to 1024 × 1024. Such a
high resolution is required for preserving the small visual
features. These features are important for some downstream
tasks, such as the SLAM feature tracker. However, the region
of interest (ROI) is always around the laser ring, which
only takes a small portion of the whole image. We perform
a Cartesian to Polar coordinate transformation (denoted as
Cart → Polar), which converts the circular ROI to a rect-
angle for the ease of cropping and reducing the processing
region. The coordinate transformation is essentially a pixel-
wise mapping from the {x, y} domain to the {θ, ρ} domain,
as shown in Eq. (1) and Eq. (2), where (Cx, Cy) is the
image center, H and W are the height and width of the
image, R is the maximum radius, which is set to half of the
image size, i.e., 512. We crop the image around the laser line
along the horizontal axis, as visualized by [Ipi−1, I

p
i ]. When

cropping, we leave enough context information for optical
flow estimation as well as to handle the imperfect pipes,
where the laser pixels deviate more from a straight line.

I =

[
x− Cx

y − Cy

]
(1){

θ = (H/2π) · ∠I
ρ = (W/R) · ∥I∥

(2)

The coordinate transformation brings additional overhead
that needs to be reduced. Assume the image frames captured
by the sensor always have the same size, then the {x, y} →
{θ, ρ} mapping is constant. We can pre-calculate and cache
the result, and only perform image warping at inference
time. Moreover, image warping can be accelerated on GPU.
The caching and GPU acceleration reduce the transformation
time to 5.8% of the original OpenCV implementation. We
similarly accelerate the Polar to Cartesian coordinate trans-
formation (denoted as Polar → Cart in Fig. 2).

After the ROI cropping, the image size is reduced to
26% of the input. Next, a simple color filter is performed
to extract the laser mask, which indicates the region to be
inpainted. The masked images Imi−1, Imi and the masks Mi−1,
Mi are stacked together and fed into the FastFlowNet [24]
to obtain the optical flow F p

i , which represents the pixel
movement from Ipi−1 to Ipi . The details of the flow estimator
are elaborated in Sec. III-B.

The previous inpainted frame Op
i−1 is warped with F p

i

to fill the masked-out region and get the inpainted output
Op

i . For the very first frame, we set Op
0 = Im0 . The pixel

propagation equation is shown in Eq. (3), where Mi is the



laser mask that contains a collection of laser pixel indices.
f = F p

i (x, y) is the vector of the pixel movement at the
given location.

Oi([x, y]
⊤) =

{
Ii([x, y]

⊤ + f), if {x, y} ∈ Mi

Ii([x, y]
⊤), otherwise

(3)

Finally, we replace the ROI in the original Polar-coordinate
image with Op

i and convert it back to the Cartesian coordi-
nate to get the output Oc

i without laser. The result is saved
for processing the next input image Ici+1.

B. Unsupervised Optical Flow Estimation

The optical flow estimator plays an important role in flow-
based Video Inpainting algorithms. If the estimated optical
flow is inaccurate, the pixel propagation stage will fail and
significantly influence the image reconstruction quality.

State-of-the-art optical flow networks are reported to have
very low Endpoint Errors (EPEs), however, most of these
pre-trained networks perform poorly for in-pipe images be-
cause of the domain shift. Public large-scale optical flow
datasets, such as KITTI [25], Sintel [26], and Flying Chairs
[21] are all designed for natural images. Trained on these
datasets, the networks learn to track the movement of
cars, humans, or other objects. On the contrary, features
in pipelines are mainly made of rust, dust, or merely the
texture of the cast iron. These small features are outside the
training data distribution and cause the pre-trained networks
to predict inaccurate results, so fine-tuning is necessary. One
challenge is that, unlike the synthetic dataset, there are no in-
pipe optical flow labels. To address this problem, we leverage
Unsupervised Learning to fine-tune the optical flow network
on our unlabeled in-pipe dataset collected by the robot.

Another challenge is that, since the laser strips are masked-
out in the input images, the output optical flow is incomplete
in the laser regions. DFGV uses a cascading network to
predict the complete optical flow. We propose to predict
the complete optical flow directly from the optical flow
estimation network for better efficiency.

In this work, the optical flow is estimated by a modified
version of FastFlowNet [24]. It is described in three sub-
sections: the network architecture, the loss function, and the
data augmentation methods.

Network Architecture: To support real-time applications,
we need a lightweight optical flow estimation network. Fast-
FlowNet balances well between accuracy and efficiency [24].
It has three major components. The Head Enhanced Pooling
Pyramid (HEPP) and the Center Dense Dilated Correlation
(CDDC) module heavily compress the spatial size and the
number of channels when encoding the feature pyramid. The
Shuffle Block Decoder (SBD) utilizes ShuffleNet [27] blocks
to reduce the computation when decoding the optical flow.

As our objective is to directly predict the complete optical
flow, more information needs to be provided to the network.
The mask Mi, which indicates what region is masked out,
together with the image Imi are stacked and form a 4-channel
input tensor, i.e., mask channel and RGB channels. The input

for the first convolutional layer is thus increased from 3-
channel to 4-channel. When loading the pre-trained network,
the weights for the third channel are copied to the new
channel. This helps the network converge faster than random
initialization during training.

FastFlowNet uses a shared weight feature extractor for
the two input images to reduce the number of parameters
[24]. However, due to our input frames being sequential,
calculating the feature pyramid for the same image twice
is redundant. More specifically, at time i, the input to the
flow estimator is {[Mi−1, I

m
i−1], [Mi, I

m
i ]}. At time i + 1,

the input becomes {[Mi, I
m
i ], [Mi+1, I

m
i+1]}, where the frame

[Mi, I
m
i ] is processed twice. To remove the redundancy, we

modify FastFlowNet to output both the estimated optical flow
F p
i and the latent feature pyramid zi for [Mi, I

m
i ], as shown

in Fig. 2. The zi is cached and used as part of the input at
the next timestamp.

Loss Function: An unsupervised loss function is utilized
for both improving the network performance on our unla-
beled dataset as well as directly predicting the complete
optical flow. We adopt the unsupervised photometric loss and
the smooth regularization from [23]. The photometric loss is
defined in Eq. (4), where Θ is the set of learnable parameters
of the estimator f , Î1 is the first image warped with the
network’s output. Im1 and Im2 are the masked image inputs.
I2 is the second image, which is used as the supervision.
ρ is the function of pixel-wise structural similarity (SSIM),
and we calculate the summation for each pixel p. This loss
function is used to optimize the optical flow such that the
warped first image matches the second image. The inputs are
corrupted images, but instead of using the same image pair
as supervision as in [23], we calculate the photometric loss
with the complete image pair, such that the network learns
to predict the complete flow directly.

Lph =
∑
p

ρ(Î1(f(I
m
1 , Im2 ; Θ)), I2) (4)

The smooth regulation term is defined in Eq. (5), where
F is the estimated optical flow. This is to eliminate the
ambiguity of texture-less regions, which is common in in-
pipe environments. The richness of textures is measured by
the image gradient. For regions with small gradients in the
image, we also want small gradients in the optical flow
domain to get a smooth flow output.

Lsm =
∑
d∈x,y

∑
p

||∇dF ||1 e−|∇dI| (5)

The overall loss function is defined as Eq. (6), where λ =
50 is a hyper-parameter, following the same setup in [23].

L = Lph + λLsm (6)

Data Augmentation: Data augmentation helps us increase
the size of the training set and prevent over-fitting. Two types
of data augmentation techniques are used for training. The
first one, speed augmentation, trains the network to handle
different robot moving speeds. To achieve this, instead of



giving two consecutive frames {Ii, Ii+1} in the dataset as the
input, we skip some frames and use {Ii, Ii+n} to simulate
the robot moving faster. We randomly choose n in the range
of [1, 3] during the training phase.

The second data augmentation technique is random laser
mask generation. Our testing pipes are all nearly perfect
cylinders, such that the laser masks always look similar.
However, certain defects may change the pipe’s shape, and a
pipeline inspection robot shouldn’t fail in these cases. We use
B-Splines [28] to synthesize laser masks with imperfection.
Four knots at the top, right, bottom, and left are first created
to form a perfect circle, and then random perturbations are
added to make the circle imperfect. During the evaluation
phase, we use real laser masks extracted from the images.

C. Downstream Task Integration

Our algorithm can be easily plugged into existing systems
since it only requires a video stream, and is not coupled with
hardware. We demonstrate the downstream task integration
method with VLI-SLAM [6], as it is more complicated and
has higher input quality requirements than other tasks, such
as wheel encoder-based laser scanning.

Components in VLI-SLAM communicate with each other
using the Robot Operating System (ROS) message-passing
interface. In the original VLI-SLAM, the robot sensor driver
outputs three topics, where two image topics /profile and
/visual are used to obtain depth and color information
and perform feature tracking. The inertial topic /imu and
the tracked features are sent into the backend for online
optimization. With the proposed method, the laser projec-
tor no longer needs to be repeatedly turned off, and the
/visual topic from the sensor can be simply removed. The
newly added inpainting module takes the /profile topic
as the input, inpaint the laser area, and outputs the equivalent
/visual topic. Since the inpainting module is decoupled
with the VLI-SLAM and only used for input pre-processing,
the other parts of the SLAM system remain unchanged.

IV. EXPERIMENTS

We designed three different experiments to evaluate the
algorithm performance as well as verify it can support down-
stream tasks. We first study the image reconstruction quality
and compare it against several previous Image and Video
Inpainting methods. Then, we conduct two other experiments
to analyze the scanning and localization accuracy difference
between the original laser alternating and the proposed
method for VLI-SLAM. We show that the difference is small
and the downstream task is negligibly affected.

A. Robot Platform and Experiment Setup

We build a custom pipeline inspection robot for data
collection. The robot consists of a modular pipe crawler and a
sensor payload, as shown in Fig. 3. The robot is tethered, and
all data is transferred to a laptop computer via an Ethernet
cable. A 3D-printed calibration board for scanning accuracy
analysis is also shown in the figure, which is introduced later
in Sec. IV-C.

10 cm
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30.5 cm

Power / Ethernet Cable
Modular

Pipe Crawler

Onboard Computer

LaserCamera

LED

Laser Pole

Fig. 3. A photo of the sensor payload with the case open, together with
a composed image where the robot is surrounded by the scanned pipeline
point cloud to demonstrate the working scenario. The calibration board is
attached on the pipe’s inner surface.

The image dataset to train the optical flow estimator is
collected from a steel 12-inch diameter natural gas pipe
using the robot. The training set consists of 825 consecutive
images, with a raw resolution of 1232 × 1028. At the pre-
processing stage, all images are cropped and transformed
to the Polar coordinate as described in Sec. III-A. The
testing set has 500 images collected from another pipe
segment, which has different textures from the training pipe.
In order to get the ground truth images without laser, the
laser projector is turned off when collecting the training and
testing set. We fine-tune the pre-trained FastFlowNet using
the Adam optimizer with a learning rate of 1e-4, a beta of
0.999, and a momentum of 0.9. The model is trained for
100 epochs, and the batch size is set to 32. More data with
different real-world natural gas pipes (provided by Peoples
Gas Company, Pittsburgh, PA) are collected to evaluate the
influence on the downstream task.

B. Image Reconstruction Quality Evaluation

The image reconstruction quality is studied by measuring
the error between the algorithm’s output image and the
ground truth. Four quantitative metrics are used, including
Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error
(MSE), Structural Similarity Index Measure (SSIM), and
Learned Perceptual Image Patch Similarity (LPIPS). PSNR
and MSE are used to measure the pixel-wise error. SSIM
measures the structural similarity between the reconstructed
image and the ground truth. LPIPS uses a pre-trained VGG
[31] network to calculate the perceptual similarity. This
metric is closer to human judgments [32].

In Tab. I, we compare our proposed algorithm with
four Video or Image Inpainting baseline algorithms: DFGV
[15], FGVC [16], DeepFill V2[29], and TELEA [30]. Our
algorithm only uses past information, and thus it is an
online method. DeepFill V2 and TELEA are single-frame
Image Inpainting algorithms, so they are also online. DFGV
and FGVC are two flow-based methods and both use bi-
directional optical flows to refine the results. These two
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fails for some regions because of the inaccurate optical flow estimation. Some interesting regions are zoomed in and the image sequences are shown.

TABLE I
IMAGE RECONSTRUCTION QUALITY EVALUATION.

Methods Online Device FPS ↑ PSNR ↑ MSE (10−5) ↓ SSIM ↑ LPIPS (10−3) ↓
DFGV [15] ✗ GPU 0.43 43.74 4.24 0.990 6.82
FGVC [16] ✗ GPU 0.068 44.12 3.97 0.993 6.10

DeepFill V2 [29] ✓ GPU 1.9 33.27 47.65 0.980 20.38
TELEA [30] ✓ CPU 13.8 40.06 10.99 0.980 15.07

Ours ✓ GPU 23.3 42.38 5.84 0.992 5.66
↑: higher is better; ↓: lower is better; Red colored metrics are less preferable.

methods cannot be directly used for online applications. A
more recent end-to-end offline model, E2FGVI [17], fails to
execute on our experiment computer, as it requires too much
GPU memory.

The speed tests are performed on a laptop computer with
an Intel i7 CPU and an Nvidia RTX 3080 laptop GPU (8GB
GPU memory). All deep learning methods are executed on
the GPU. We use the OpenCV version of TELEA, which is
a CPU implementation. However, we expect it can run faster
with GPU acceleration. For comparison fairness, the numbers
of iterations for DFGV and FGVC are set to 1, and the deep
Image Inpainting modules in these models are removed. All
models are implemented in vanilla PyTorch, i.e., no mixed
precision, TensorRT, or other acceleration techniques are
used. We find our method is significantly faster than all
the baseline methods and reached an FPS of 23.3. Such
a speed is sufficient for the SLAM real-time requirement.

The coordinate transformation component plays a key role
to reduce the computation cost: without this component, the
FPS drops to 19.9. All experiments are conducted at the
image resolution of 1024× 1024.

The results in Tab. I show that our method has comparable
or better image reconstruction quality with the two offline
models. The three Video Inpainting algorithms have notably
better quality compared with the two single-frame Image
inpainting methods for all four metrics. Our method has
slightly worse results on the two pixel-wise metrics, PSNR
and MSE, compared with DFGV and FGVC. We suspect
this is because our method can only utilize unidirectional
optical flow, and thus cannot smooth the pixel intensity
like bi-directional methods. Although the pixel intensity is
not perfect, the detailed features can be reconstructed. We
observe the two structural similarity metrics, SSIM and
LPIPS are comparable or even slightly better than DFGV



and FGVC. For our point cloud colorization problem, we
care more about the feature structural accuracy on the laser
strip. The absolute pixel brightness is less important in our
application.

Qualitative results are visualized in Fig. 4. For each case,
we visualize the input image, the result from DFGV, the
output image from our method, and the ground truth. The
main image shows the complete image at the time stamp
t. We show a zoom-in view of an interesting region for
each case with a time sequence from t − 2 to t + 2. The
proposed method can reconstruct the corrupted region with
high accuracy, even for very detailed features.

C. 3D Scanning Accuracy Comparison

We hypothesize that our algorithm does not induce a major
negative influence on the 3D scanning accuracy for VLI-
SLAM. This can be verified using a 3D-printed calibration
board as the to-be-scanned ground truth object. The calibra-
tion board has a flat surface with a square and a spherical
protrusion with known dimensions and is attached to the
pipe’s inner surface. When the robot is traveling through
the pipe it scans the calibration board and generates a point
cloud, as shown in Fig. 3. The Iterative Closest Point (ICP)
[33] algorithm is performed to register the scanned point
cloud and the ground truth Computer-Aided Design (CAD)
model. The root-mean-square (RMS) error is reported in
Tab. II. We observed that both the laser alternating method
used in the original VLI-SLAM and the proposed Video
Inpainting algorithm have sub-mm level scanning accuracy
with only 1.1% difference, which indicates the influence
of the proposed method is negligible and supports our
hypothesis.

TABLE II
3D SCANNING ERROR

Method RMS (mm)
Laser Alternating + VLI-SLAM 0.910
Video Inpainting + VLI-SLAM 0.927

D. Localization and RGB-D Reconstruction Analysis

For longer-range pipe scanning, the accuracy of robot
localization is important, because if the odometry drifts the
scanned pipe will bend in the wrong direction. Fig. 5 shows
the Absolute Trajectory Error (ATE) [34] of the original VLI-
SLAM and the modified version. The ground truth robot
trajectory is measured by using a Leica total station to
track a prism mounted on the top of the robot. To test the
algorithm’s generalization capability, we repeated the exper-
iments on four real-world natural gas pipe segments with
different textures. The estimated robot trajectories and the
ground truth are first aligned with the Horn’s method [35],
and the Euclidean distances between each pair of matched
points are visualized in the plot with respect to the position
along the pipe’s axial direction. We find that both methods
have relatively small drifts. It’s interesting that the proposed
method has a slightly better performance compared with the

original VLI-SLAM algorithm. This is more significant for
the feature-less pipe (pipe B). One potential reason is that
after propagating the features following the optical flow, the
features in the output image are more easily to be detected
and tracked by the SLAM feature tracking module. However,
more investigation needs to be conducted in the future to find
the root cause. In conclusion, the proposed Video Inpainting
algorithm doesn’t negatively affect the robot localization
accuracy, and the RGB-D pipeline reconstruction is able to
reveal the pipeline texture.

B

Laser Alternating Video Inpainting

Fig. 5. The localization error and RGB-D reconstruction visualization. The
box plots show the mean and spread of the errors. Input data is from the
test set, which is not exposed to the model during training.

V. CONCLUSION, LIMITATION, AND FUTURE WORK

In this paper, we present a novel algorithm for RGB-
D pipeline reconstruction by framing the color restoration
problem as a Video Inpainting task. To our knowledge,
this is the first real-time Video Inpainting algorithm appli-
cable to in-pipe environments, making it highly valuable
for constructing compact RGB-D inspection systems for the
pipeline industry. Real-world experiments showcase that our
algorithm surpasses other inpainting methods in terms of
accuracy and real-time performance. Moreover, our approach
supports demanding downstream tasks, such as SLAM,
and can be easily integrated to existing visual-laser-based
pipeline inspection systems with minimal hardware changes.

While our method offers several advantages, there are
still limitations that can be addressed in future work. The
first limitation arises from our reliance on the brightness
consistency assumption in the optical flow algorithm. This
assumption causes a slight boundary effect around the laser
region in the output image, as shown in Fig 4. Although this
issue does not significantly affect our primary goal of esti-
mating textures inside the laser region and has no noticeable



impact on SLAM performance, it may have more pronounced
effects on downstream tasks that are more sensitive to such
artifacts. To mitigate this issue, we plan to explore the use of
Image Harmonization [36] techniques to more effectively and
efficiently blend the inpainted region into the original image
and produce a more seamless result. Another limitation is
that due to the lack of accessible pipes, our current dataset
does not include images with severe geometric or material
defects. To address this limitation, we intend to expand the
range of testing pipe samples and damage conditions in the
next phase of our research.
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