
Multi-agent Collective Construction using 3D Decomposition

Akshaya Kesarimangalam Srinivasan∗, Shambhavi Singh†, Geordan Gutow∗,
Howie Choset∗ and Bhaskar Vundurthy∗

Abstract— Consider a Multi-Agent Collective Construction
(MACC) problem that aims to generate a plan for fictitious
cubic robots to build a three-dimensional structure comprised
of cubic blocks. These cubic robots can carry one cubic block
at a time; robots may move left, right, forwards, backward,
or climb up or down one block. To construct structures taller
than one cube, the robots must build supporting scaffolding
made of blocks and remove the scaffolding once the structure
is built. Prior works sought to create a planner that considered
the structure as one monolithic assembly, which becomes
intractable for larger workspaces and complex structures. To
this end, we present a decomposition algorithm that breaks
the structure into substructures that can be planned for
independently. We use Mixed Integer Linear Programming
(MILP) to plan for each of these substructures and then aggre-
gate the solutions to construct the entire structure. Extensive
testing on 200 randomly generated structures shows an order
of magnitude improvement in the solution computation time
compared to an MILP approach without decomposition. Finally,
we leverage the independence between substructures to detect
which substructures can be built in parallel.

I. INTRODUCTION

The paper considers a Multi-Agent Collective Construc-
tion (MACC) problem that aims to construct a given three-
dimensional structure of homogeneous cubic blocks using a
set of robots in a voxel world in the minimum makespan
(number of time steps) [1]. Previous solutions to the MACC
problem include optimization [1], heuristics [2][3], [4], and
Reinforcement Learning (RL) [5], [6]. Because of the com-
putational complexity of this problem, all prior work is
forced to trade off plan quality and run time. Most existing
works [5], [2] produce highly sub-optimal plans in exchange
for extremely fast run times; in contrast, [1] yields a globally
optimal plan but is very slow. This paper introduces a
technique that can produce near-optimal plans with shorter
runtimes compared to [1].

Our main contribution is an algorithm that decomposes a
structure into substructures (see Fig 1), whose construction
may be planned independently, and finds an order in which
they can be built. The resulting construction plan requires
a larger makespan than the optimal solution but requires an
order of magnitude less computational time. This subopti-
mality is mitigated by identifying which substructures can
be built simultaneously and overlapping their construction.

This work was supported by the Air Force Research Lab
∗Akshaya Kesarimangalam Srinivasan, Geordan Gutow, Howie Choset,

and Bhaskar Vundurthy are with Carnegie Mellon University, USA. (email:
{akesarim, ggutow, choset, pvundurt}@andrew.cmu.edu).

†Shambhavi Singh is an intern at the Robotics Institute at Carnegie
Mellon University, USA, and a student at Birla Institute of Technology
and Science, Pilani, India. (email: shambhas@andrew.cmu.edu)

(a) Input structure (b) Structural decomposition

(c) Ordering of substructures (d) Parallelizable construction

Fig. 1: Visualization of our solution to the MACC problem.

We start with the problem formulation in section II and
present a brief review of existing approaches in section
III. Section IV details our decomposition and ordering
algorithms and discusses parallelization to achieve further
speedup. Numerical results are presented in section V while
section VI concludes the paper and proofs are presented in
the appendix.

II. PROBLEM FORMULATION

The MACC problem formulation in this work is identical
to that considered in [1]. It is set in a 3D voxel world
containing a predefined structure composed of cube-shaped
building blocks and block-sized robots. The robots collabo-
ratively construct the structure by moving these blocks using
any of the following permissible actions (Fig. 2) in a given
time step:

1) Move one step in the four compass directions or wait
2) Climb up or down one block at an adjacent cell
3) Pick up or place a block at an adjacent cell of the same

height
Except for blocks on the ground level, all blocks must have

a block beneath them, i.e., no blocks may “float” in space.
Robots can only pick up or place down the topmost block
at any location. They must therefore construct scaffolding to
access cells not surrounded by blocks of the same height, but
the structure is not considered complete until all scaffolding
has been removed. An unlimited supply of blocks is available
at the boundary of the grid world, and robots that exit the

Fig. 2: Permissible actions for the robots

grid world can enter from any boundary cell in the next time-
step. The world is initially empty, and the robots start and
finish outside the grid world. The task is to find a sequence
of actions for the robots to build the structure subject to the
rules above. Algorithm performance is compared via three
metrics:

1) Computation Time: time taken to compute the action
sequence for building the structure

2) Makespan: total number of time steps to complete
building the structure

3) Sum of costs: total number of actions used by all the
robots

III. RELATED WORKS

Interest in using robots for building construction and
assembly has led to a variety of proposed technologies
[7], including additive manufacturing techniques [8], auto-
mated robotic assembly [9], and automated bricklaying [10].
A particular focus area is settings like open pit mining
and extraterrestrial or underwater construction where human
presence is difficult or dangerous [11][12][13][14]. In these
applications, teams of smaller robots have the potential to be
more effective than a few larger robots as they are cheaper,
easier to deploy, and can work in parallel [2][15][16]. Con-
siderable prior work has therefore addressed how to plan for
and coordinate such robot teams.

MACC has been explored in both two [17] and three-
dimensional worlds with varying types of agents and blocks.
For example, teams of quadrotors build structures made of
beams and columns in [18]. Harvard’s TERMES considers
homogeneous blocks and agents [19] to demonstrate the
effectiveness of teams of small robots at collectively building
structures much larger than themselves. Subsequently, [2]
casts the predefined structure as a matrix with each element
representing the number of blocks at that location. Then
it seeks to minimize the number of pick-up and drop-off
operations for a single agent by restricting agent movements
to the edges of a minimum spanning tree derived from this
matrix. This forces the robot to retrace precomputed paths
to multiple destinations adversely affecting the makespan.
A distributed multi-agent reinforcement learning algorithm
used in [5] extends single-agent advantage actor-critic to
enable multiple agents to learn a homogeneous, distributed
policy. However, this approach does not generalize well to
unseen environments or a larger number of agents.

The work most closely related to the current effort is the
optimization approach presented in [1]. The MACC problem
is solved using MILP or Constraint Programming (CP). The

MILP model treats all robots as one flow through a time-
expanded graph. Each decision variable defines the actions
of a robot. The CP approach uses a simpler network flow,
modeling the specifications of the world as logical and ele-
ment constraints. Both formulations first find the minimum
makespan, then an action sequence with that makespan that
minimizes the sum of costs. The MILP approach guaran-
tees an optimal makespan and the optimal sum of costs
for that makespan. The paper tested both approaches on
six structures, and for these instances, MILP required less
computation time than the CP formulation. The approach
presented in Section IV calls this MILP formulation as a
subroutine. The low achievable makespans of the structures
studied in [1] indicate that small structures are simple to
construct. However, even for some of the six small structures,
the optimization models needed up to five days to compute
a solution. As will be demonstrated in section V, MILP
solution computation time is excessive for complex struc-
tures. Thus, we need approaches with a practical solution
computation time for structures of varying complexity.

There has been some work, including [20], [21], for
solving these large MILP problems. [21] uses a two-level
approach to make large MILP problems with binary variables
tractable. It first groups variables and forms a semi-coarse
model. It then aggregates constraints by partitioning them
into groups and adding the violated constraints to the semi-
coarse model iteratively till all the constraints in the full
model are added. Inspired by 3D model decomposition work
[22], this paper reduces the number of variables in the
MILP problem by solving for one substructure at a time.
Constraints are aggregated at each stage to represent the
intermediate structure to be built.

IV. APPROACH

A decomposition algorithm is proposed to break input
structures into simpler substructures. A bottom-up planner
then determines an order in which the substructures can be
built. MILP then computes an optimal sequence of actions
for every substructure [1].

A. Structural Decomposition

In a 3D voxel world of dimensions (X×Y×Z), we denote
a predefined structure S using z̄(x,y) where z̄ indicates the
number of blocks stacked at grid location (x,y) and z points
to the height of a specific block, x≥ 1,y≥ 1,z≥ 0, z̄(x,y)≥ 1
and x ≤ X ,y ≤ Y,z ≤ z̄ ≤ Z. We begin by ensuring that all
predefined structures are valid.

Definition 1: A structure S is valid if, for every block B1 ∈ S
at (x,y,z) with z > 1, there exists B2 ∈ S at (x,y,z−1).

Note that robots can use blocks at a lower height as
scaffolding for higher blocks. As a result, it is preferable
to ensure any useful blocks (for scaffolding) are part of the
same substructure as the higher block under consideration.
This minimizes duplication of efforts for building the tem-
porary scaffolding. We use the notion of a shadow region to
capture this relationship.

Algorithm 1: Structural Decomposition
Data: z̄
Result: Set of substructures S1,S2, · · ·

1 towers ← elements of z̄ in decreasing order; i← 1;
2 for h in towers do
3 if Topmost block of h not in a substructure then
4 Initialize substructure Si ← /0;
5 Shadow indices, sidx ← cells in shadow

region of tower h using Definition 2;
6 for s in sidx do
7 if s is not in any substructure then
8 add s to Si;
9 end

10 end
11 i← i+1
12 end
13 end

Definition 2: For a tower of height z located at (x,y), i.e, z
blocks stacked at (x,y), all cells (x′,y′,z′) s.t.

|x− x′|+ |y− y′|< z

z′ ≤ z− (|x− x′|+ |y− y′|)

are part of the shadow region of the tower.
We now present Algorithm 1 that decomposes the input

structure by iterating through all the towers in decreasing
order of their heights. At each step, blocks in the shadow
region of the tower that are not already part of another
substructure become part of the current substructure.
Substructures are inherently associated with a specific order
in that the validity of a substructure depends on which
substructures are already present in the world.

Definition 3: Let S′ =
⋃

i=1,2,··· , j−1 Si be a valid structure.
Then S j is a valid substructure if S′ ∪ S j is also a valid
structure.
Remark 1: Henceforth, the index of a substructure refers to
the order it was found by the decomposition algorithm.
Theorem 1: Each substructure in the order it is generated by
Algorithm 1 is a valid substructure.

B. Bottom Up Planning

For the input structure shown in Fig. 1a, note that Algo-
rithm 1 starts with a tower of height 3 and generates five
valid substructures (see Fig. 3). The validity of a substruc-
ture, say S3, can be verified by assuming that structures S1
and S2 are already present and checking for the validity of
structure S1∪S2∪S3. This is true for all five substructures,
as indicated by Theorem 1.

While there are 120 possible orders for constructing these
five substructures, not all orders allow successful completion
while adhering to the permissible actions (Section II). For in-
stance, consider the order S2, S3, S4, S1, and S5. Substructure
S3 relies on the construction of S1 while S5 cannot be built
if all the remaining substructures are already constructed.

Fig. 3: Substructures identified by Algorithm 1

To find an order of construction of substructures, we define
the traversability property for substructures. As with validity,
this depends on which other substructures are already present
in the world.

Definition 4: A substructure S j is traversable if for every
block B ∈ S j there exists a feasible path to at least one
neighbor cell at the same height as the block B, in the
presence of the structure

⋃
i=1,2,··· , j−1 Si.

Definition 5: A feasible path is a sequence of permissible
actions, including block placements and removals without
disturbing blocks from a previously constructed substructure.
Definition 6: A sequence of d substructures is feasible if
Si,∀i∈ {1,2, · · · ,d}, is traversable and

⋃
k=1,2,··· ,i Sk is valid.

Obtaining a feasible sequence of substructures is treated as
an assembly sequencing problem where the substructures are
the components, and the input structure is the final product.
The key idea is to build substructures in the reverse order
in which they can be removed/disassembled from the goal
structure, with every intermediate structure being valid. Such
an order is obtained via a bottom-up planning algorithm
inspired by [23], [24].

We now state the sufficient conditions to determine if a
block z(x,y) is removable:

1) There does not exist a block above it (at (x,y,z+ 1))
from any remaining substructures

2) There exists a feasible path to a neighboring block of
the same height in the current state of the environment

3) There exists enough space to build scaffolding to height
z when there are no neighboring blocks

Condition 1 follows from the problem formulation (Sec-
tion II) and Definitions 1 and 3. To check condition 2, a
traversability matrix is constructed considering all existing
substructures. In this matrix, the (i, j)th element is 1 if
the (i, j) location is reachable from the boundary and is
0 otherwise. A cell is reachable if a neighboring cell is
reachable and has a maximum height difference of one. The
boundary cells are always considered reachable.

We use Dynamic Programming to determine the
traversability matrix and compute contour polygons of
unreachable cells (value 0). These contours represent
impassable walls in the environment. Blocks are treated
as not removable if they are enclosed on all four sides by
blocks from another substructure or inside a contour of
impassable walls. Note that in certain cases (the presence
of a staircase on the wall’s interior), scaffolding would, in
principle, allow passing these walls. The following Lemma
1 addresses Condition 3.

Algorithm 2: Substructure Removability Check
Data: Substructure Si
Result: Removability of Si (True or False)

1 Traversability Matrix ← reachable positions in the
(x,y) grid

2 Countours ← polygons representing impassable
enclosures in the traversability matrix

3 for B ∈ blocks of Si do
4 if B surrounded by blocks /∈ Si in all four

directions then
5 return False;
6 end
7 if B inside any contour ∈ contours then
8 return False;
9 end

10 end
11 return True;

Lemma 1: In the absence of a neighboring block for B∈ S j,
Algorithm 1 ensures that there exists enough space to build
scaffolding to reach B.

A substructure Si can be considered removable if all of
its blocks are removable. For a block B in Si that has other
blocks of Si on top of it, the top blocks will be removed
first while removing Si, ensuring block B is removable.
Algorithm 2 utilizes the traversability matrix to determine
if a substructure is removable.

In addition to determining the removability of a substruc-
ture, Condition 1 hints at the dependency of substructures
on each other. For instance, if a block Bi ∈ Si is above a
block B j ∈ S j, the removal of B j cannot begin until Bi is
removed from the environment. From the point of view of
construction, Si can be treated as being dependent on S j for
its construction. We thus have the following Definition 7.
Definition 7: A substructure Si is said to be dependent on
substructure S j (denoted Si −→ S j) if

⋃
k=1,2,··· ,i Sk is a valid

structure while
⋃

k=1,2,··· ,i
k ̸= j

Sk is not a valid structure.

Algorithm 3 couples the removability of substructures
(Algorithm 2) with mutual dependency (Definition 7) to
compute a feasible order for the construction of substruc-
tures. If no substructure is removable in an iteration, there ex-
ists Si and S j such that Si −→ S j but S j prevents Si from being
traversable. Then, Si and S j are merged to get a traversable
substructure. For instance, the order of substructures found
by Algorithm 1 is S1 to S5 as shown in Fig. 3. The final
feasible order generated by Algorithm 3 is S1,S2,S5,S3,S4
as shown in Fig. 1c.

Lemma 2: The reverse of the order of removing substruc-
tures is a feasible assembly order.
Theorem 2: Given valid substructures, Algorithm 3 always
generates a feasible sequence of substructures.

C. Solution Computation and Parallel Construction

Once the substructures and a feasible order are found,
any of the conventional approaches (MILP[1], RL[5],

Algorithm 3: Substructure Ordering and Merging
Data: Od , reverse of substructure from Algorithm 1
Result: O f , feasible sequence of substructures

1 O f ← /0;
2 while Od ̸= /0 do
3 for Si in Od do
4 if Si is removable (Algorithm 2) then
5 move Si from Od to O f ;
6 end
7 end
8 if no substructure was removed and Od ̸= /0 then
9 Merge the first two elements of Od ;

10 end
11 end
12 return reverse order of O f

Tree-based[2]) can be used to find the sequence of actions
to build each substructure. In this work, we utilize MILP
to determine a plan to construct the structure with the
following theoretical guarantees.

Lemma 3: Given a valid input structure, our decomposition
and ordering algorithms, combined with MILP optimization
for each substructure, return a feasible action sequence to
build the entire structure.
Theorem 3: Consider a structure decomposed into d sub-
structures. The makespan (number of time steps) to construct
the sequence of substructures is no more than d times
the makespan required to construct the structure without
decomposition.

Further, when MILP is used, some substructures can be
built in parallel to reduce the makespan. This is achieved
by modifying Algorithm 3 such that at every iteration, all
substructures that are removable from the current state of the
environment are determined before moving any substructure
to O f . These substructures can potentially be built in parallel.

Let P = {S1,S2, · · · ,Sp} be a set of substructures that can
be built in parallel. The first substructure in P is built as
described for sequential construction. For every subsequent
substructure Si in P, the actions to build all previous sub-
structures S j, j < i are added as a constraint to the Si’s MILP.
This ensures that Si’s solution avoids agent-agent collision
with the agents building the previous substructure and does
not use more agents than permitted. In the worst case, this
devolves to sequential construction (e.g. due to insufficient
agents). Parallel execution reduces the makespan at the cost
of added constraints in the MILP formulations for each
substructure. Experiments show this does not significantly
affect the solution computation time.

V. RESULTS

A. Experimental Setup

The effectiveness of the proposed algorithm is evaluated
on: (a) six cases from [1] and [5], (b) one hundred random
structures in a 10x10x4 grid world, and (c) one hundred
random structures in a 7x7x4 grid world.

TABLE I: Comparison of the sum of costs of solutions for
our approach with other non-optimal methods

Structure Tree based [2] RL based [5] Ours
1 1144 3040 179
2 836 1026 128
3 1590 3056 326
4 2120 3252 263
5 2180 2804 381
6 836 1276 161

The MILP approach in [1] obtains the action sequence
to build each structure or substructure. All models are
solved using Gurobi 9.0.2, a SOTA solver for MILP on an
Intel® Core™ i7-7700K CPU @ 4.20GHz × 8 with 94GB
of memory. Each MILP model iterates through increasing
makespans until the model becomes feasible and then per-
forms optimization to find a solution. ‘Solve Time’ denotes
the time taken to optimize the final feasible model, and
‘Total Solve Time’ adds the time to iterate through infeasible
makespans. In every case, a limit of 10,000 seconds was set
on ‘Total Solve Time’. For each structure like the one in
Fig. 1 Algorithm 1 generates substructures (see Fig. 1b)
and Algorithm 3 identifies a feasible order for construction
(see Fig. 1c). With a maximum of 20 robots, our approach
solves this structure in 61 seconds with a makespan and sum
of costs of 67 and 207 respectively.

B. Comparison on Six Test Structures

We next conduct experiments to compare our approach
with two existing sub-optimal approaches [2] and [5] on
six structures (see Table III) used in these works. Table I
reports the sum of costs for a Heuristic-Based approach [2]
and the average sum of costs for a Distributed Reinforcement
Learning method [5] (over successful trials). It also reports
the sum of costs using MILP with decomposition (our
approach). Since the existing methods directly minimize only
the number of pick-up and drop-off actions, our approach
achieves costs up to an order of magnitude smaller than these
methods on the six test structures.

Finally, we compare our approach with [1] which obtains
the optimal sum of costs for a given input structure. Table
III presents a comparison of [1] and our decomposition
technique with and without parallelism. For all cases here, we
limit the maximum number of robots to 20. Decomposition
significantly improves the solution computation times over
pure MILP while maintaining a similar sum of costs. How-
ever, the makespan increases due to the serial construction
of substructures. Introducing parallel construction largely
mitigates this increase as it reduces the number of time steps
by an average of 46% compared to serial construction of the
decomposed substructures.

C. Comparison with Exact Approach on Random Structures

We present a comparison of metrics for randomly gen-
erated structures in two grid world sizes: 10x10x4 and
7x7x4 with a maximum of 20 and 6 robots respectively.
The chosen number of robots is sufficient to execute parallel
construction in our experiments. 100 structures were gener-
ated with different occupancy percentages, i.e., the number

(a)

(b)

Fig. 4: (a) Computation Time Vs Occupancy Percentage, (b) No.
of timesteps vs Occupancy percentage

TABLE II: Results for tests on random structures
A - Exact Approach [1], B - Decomposition (ours), C -

Decomposition+Parallel (ours)

Environment Size 10x10x4 7x7x4
Method A B C A B C

Sum of costs - 384 102.4 83.7 97.1 54.05
Makespan - 84 56.2 18.0 51.2 29.47

Solve Time (sec) - 48.1 78.5 229.4 1.5 4.3
Total Solve Time (sec) >10,000 567.9 787.4 423.5 37.8 126.03

of structure blocks divided by the size of the world. Half
had an occupancy percentage between 40% to 60%, one-
fourth had less than 40%, and one-fourth had more than
60%. The solutions for these structures are visualized in
https://akshayaks.github.io/, and the average
metrics are shown in Table II.

Fig. 4b shows that makespan increases with increasing
occupancy percentage. On average, for the 7X7X4 environ-
ment, the number of time steps increased from 76 to 122 as
the occupancy percentage increased from 30 to 70%. Note
that the number of variables in the MILP (independent of the
number of robots) is linear in the makespan and the solution
computation time increases exponentially with the number
of variables. Thus, decomposition is beneficial for run-time:
solving smaller MILP models (one for each substructure that
can usually be built in fewer time steps than the full structure)
is much faster than solving one large model.

With increasing occupancy percentage, the improvement
in the solution computation time also increases, as seen in
Fig. 4a. Although the sum of costs remains comparable,
the decomposition approach has a higher makespan than
MILP across all occupancy percentages. However, makespan
improves with the parallel construction of substructures as
shown in Fig. 4b. Higher occupancy percentage structures

https://akshayaks.github.io/

TABLE III: Results for the six test cases
Metrics for solutions obtained using with and without decomposition and parallelization on a set of six test structures used by [1] and [5]. Bold indicates

improvement over [1]. A - Exact Approach [1], B - Decomposition (ours), C - Decomposition+Parallel (ours)

Test Structure
Method A B C A B C A B C

Sum of costs 173 176 179 124 128 128 - 326 326
Makespan 13 48 17 13 48 14 - 106 44

Solve Time (in sec) 1030.3 16.6 11.1 61.0 11.5 10.2 - 49.6 26.4
Total Solve Time (in sec) 1115.0 241.3 259.4 139.0 235.9 198.1 >10,000 377.2 318.1

Test Structure
Method A B C A B C A B C

Sum of costs - 204 263 - 365 381 160 153 161
Makespan - 113 75 - 130 90 21 50 40

Solve Time (in sec) - 36.7 31.2 - 37.1 27.8 1215.3 15.6 12.2
Total Solve Time (in sec) >10,000 610.7 758.6 >10,000 639.4 688.5 1715.2 256.9 287.9

thus show a greater reduction in makespan. Small, sparse
structures get little benefit from decomposition as they only
require a few time steps to be built and the original MILP
problem is not very large.

VI. CONCLUSIONS

In this paper, we presented an algorithm to decompose any
valid input structure into substructures and obtain a feasible
order to build the substructures. Experimental results showed
that MILP optimization with decomposition has an order of
magnitude improvement in the solution computation time
compared to MILP without decomposition. However, the for-
mer demonstrated greater makespan when the substructures
were built sequentially or with basic parallelization.

Developing more sophisticated algorithms to construct
substructures in parallel is a promising future direction. For
example, one can determine the action sequence to construct
each substructure that can be built in parallel. Then the action
sequences can be post-processed to enforce constraints. Fur-
ther, the decomposition into substructures can be modified
to optimize metrics like the number of scaffolding blocks
required or the parallelism provided. Finally, the similarity
between substructures can be leveraged to calculate the
action sequence required to build the latest substructure using
solutions of previous substructures.

APPENDIX
Proof: [Theorem 1] Consider the decomposition algo-

rithm described in Algorithm 1. The first substructure, S1,
found corresponding to the tallest tower in the structure,
will contain all the blocks in the shadow region of this
tower. By Definition 2, the shadow region includes all cells
starting from the topmost block of the tower to all the lower-
level neighbor cells till z = 1. Thus, adding S1 to an empty

environment results in a valid structure, and hence S1 is a
valid substructure. Using induction with contradiction:

Base Case: For every block B1 ∈ S1 at height z≥ 2, ∃B2 ∈
S1 at height (z−1). Thus S1 is a valid substructure. Inductive
Rule by contradiction: Suppose S1, · · · ,Sk were all valid
substructures. Now suppose Sk+1 is an invalid substructure.
Then there exists a block B0 below a block B1 in Sk+1 such
that B0 is not in any of the S1 to Sk+1 substructures. However,
as per Algorithm 1, if B0 were below B1, and if B0 was not a
part of any of the previous k substructures, then B0 will be a
part of Sk+1 (as B0 and B1 would belong to the same shadow
region). Hence, by contradiction, B0 is a part of substructure
Sk+1, and

⋃
i=1,2,··· ,k+1 Si is valid. Thus substructure Sk+1 is

a valid substructure.
Proof: [Lemma 1] Consider two blocks B1 ∈ S1 and

B2 ∈ S2, where scaffolding for B1 at height z is obstructed
by B2. This implies B2 is less than z−1 Manhattan distance
away from the tower T1 containing B1. Then B2 falls in the
shadow region of T1, indicating that B2 ∈ S1. Alternatively,
if B2 belongs to a tower taller than z, then B1,B2 ∈ S2. Both
of these scenarios contradict the assumption that B1 ∈ S1 and
B2 ∈ S2. Consequently, if there is no neighboring block for
B1, there exist no blocks from other substructures to prevent
the construction of the required scaffolding.

Proof: [Lemma 2] The reverse of the order of removal
can be used as a feasible order of construction if each
removal operation is the reverse of a feasible assembly
operation. This is ensured if the removal operation satisfies
two criteria: task feasibility and structure stability [23]. Task
feasibility is met if a collision-free incremental path exists to
separate the substructure from the structure, and these actions
are reversible. This follows from the sufficient conditions
described in Section IV-B. Structure stability is true if the

two substructures remain joined after being assembled. This
follows from Theorem 1. Consequently, the reverse of the
order of removal of substructures is a feasible sequence for
constructing the substructures.

Proof: [Theorem 2] Recall that an ordering is feasible
if each of the substructures is traversable and every inter-
mediate structure is valid. Consider a structure decomposed
into d substructures. Assume S1,S2, · · · ,Sk to be a feasible
sequence while S1,S2, · · · ,Sk+1 is not. This implies that
substructure Sk+1 is either not traversable or

⋃
i=1,··· ,k+1 Si

is not a valid structure. In other words, Sk+1 must not be the
(d−k)th substructure to be removed. However, Algorithm 2
checks for traversability to determine a removable substruc-
ture. Further, Theorem 1 states that only valid substructures
(Od) are generated using Algorithm 1. Since Algorithm
3 iterates through Od to compute the final sequence of
valid substructures (O f) as the reverse of the order in
which substructures are removed, Sk+1 is indeed the (d−
k)th substructure to be removed. Hence, by contradiction,
S1, · · · ,Sk+1, as determined by Algorithm 3, is a feasible
sequence of substructures.

Proof: [Lemma 3] The MILP approach will find a
solution for a valid structure at the minimum makespan
for which the MILP model becomes feasible. It follows
from Theorems 1 and 2 that Algorithms 1 and 3 return
a feasible sequence of substructures given a valid structure.
Since a feasible sequence indicates valid substructures, MILP
approach will return a solution for every substructure.

Thus from Theorem 1, Theorem 2, and Lemma 3, it is
proved that our approach is complete.

Proof: [Theorem 3] For N agents and d substructures,
let T N

i be the minimum makespan required to build substruc-
ture Si when substructures S1 to Si−1 are already built. Let
T N

whole be the minimum makespan required to build the entire
structure starting from an empty world. The shadow region
from Definition 2 encompasses all blocks that can act as
scaffolding for a given tower. Algorithm 1 uses this notion
of shadow region to restrict all supporting blocks to either
the same substructure or one of the previous substructures.
As a result, constructing a substructure does not take any
additional time other than what it would take to construct
that part in the entire structure. We thus have the following
relation for any substructure Si generated via Algorithm 1:

T N
i ≤ T N

whole ∀ i ∈ {1,2, · · · ,d} (1)

Further, for the sequential construction of d substructures,
the total makespan is upper bounded as:

d

∑
i=1

T N
i ≤ d ∗T N

whole (2)

REFERENCES

[1] E. Lam, P. J. Stuckey, S. Koenig, and T. K. S. Kumar, “Exact
approaches to the multi-agent collective construction problem,” in
Principles and Practice of Constraint Programming, H. Simonis, Ed.
Cham: Springer International Publishing, 2020, pp. 743–758.

[2] T. Kumar, S. Jung, and S. Koenig, “A tree-based algorithm for
construction robots,” Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 2014, pp. 481–489, 05 2014.

[3] A. Grushin and J. A. Reggia, “Automated design of distributed
control rules for the self-assembly of prespecified artificial structures,”
Robotics and Autonomous Systems, vol. 56, no. 4, pp. 334–359, 2008.

[4] A. Panangadan and M. G. Dyer, “Construction in a simulated envi-
ronment using temporal goal sequencing and reinforcement learning,”
Adaptive Behavior, vol. 17, no. 1, pp. 81–104, 2009.

[5] G. Sartoretti, Y. Wu, W. Paivine, T. K. S. Kumar, S. Koenig, and
H. Choset, “Distributed reinforcement learning for multi-robot de-
centralized collective construction,” in International Symposium on
Distributed Autonomous Robotic Systems, 2018.

[6] S. R. B. dos Santos, S. N. Givigi, and C. L. Nascimento, “Autonomous
construction of structures in a dynamic environment using rein-
forcement learning,” in 2013 IEEE International Systems Conference
(SysCon), 2013, pp. 452–459.

[7] M. Gharbia, A. Chang-Richards, Y. Lu, R. Zhong, and H. Li, “Robotic
technologies for on-site building construction: A systematic review,”
Journal of Building Engineering, vol. 32, p. 101584, 08 2020.

[8] C. Ye, N. Chen, L. Chen, and C. Jiang, “A variable-scale modular 3d
printing robot of building interior wall,” in 2018 IEEE International
Conference on Mechatronics and Automation (ICMA), 2018, pp. 1818–
1822.

[9] K. Jung, B. Chu, and D. Hong, “Robot-based construction automation:
An application to steel beam assembly (part ii),” Automation in
Construction, vol. 32, p. 62–79, 07 2013.

[10] Y. Wu, H. H. Cheng, A. Fingrut, K. Crolla, Y. Yam, and D. Lau, “Cu-
brick cable-driven robot for automated construction of complex brick
structures: From simulation to hardware realisation,” in 2018 IEEE
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), 2018, pp. 166–173.

[11] J. Werfel and R. Nagpal, “Extended stigmergy in collective construc-
tion,” IEEE Intelligent Systems, vol. 21, no. 2, pp. 20–28, 2006.

[12] M. W. Cohen and V. N. Coelho, “Open-pit mining operational planning
using multi agent systems,” Procedia Computer Science, vol. 192, pp.
1677–1686, 2021, knowledge-Based and Intelligent Information En-
gineering Systems: Proceedings of the 25th International Conference
KES2021.

[13] B. Khoshnevis, “Automated construction by contour crafting—related
robotics and information technologies,” Automation in Construction,
vol. 13, no. 1, pp. 5–19, 2004, the best of ISARC 2002.

[14] J. Werfel and R. Nagpal, “Three-dimensional construction with mobile
robots and modular blocks,” I. J. Robotic Res., vol. 27, pp. 463–479,
03 2008.

[15] H. Durrant-Whyte, N. Roy, and P. Abbeel, Construction of Cubic
Structures with Quadrotor Teams, 2012, pp. 177–184.

[16] M. S. d. Silva, V. Thangavelu, and N. Napp, “Autonomous multi-
material construction with a heterogeneous robot team,” 09 2018.

[17] J. Werfel, Y. Bar-Yam, D. Rus, and R. Nagpal, “Distributed construc-
tion by mobile robots with enhanced building blocks,” in Proceedings
2006 IEEE International Conference on Robotics and Automation,
2006. ICRA 2006., 2006, pp. 2787–2794.

[18] Q. Lindsey, D. Mellinger, and V. Kondepogu, “Construction with
quadrotor teams,” Autonomous Robots, vol. 33, 10 2012.

[19] H. Durrant-Whyte, N. Roy, and P. Abbeel, TERMES: An Autonomous
Robotic System for Three-Dimensional Collective Construction, 2012,
pp. 257–264.

[20] M. A. Bragin, P. B. Luh, B. Yan, and X. Sun, “A scalable solution
methodology for mixed-integer linear programming problems arising
in automation,” IEEE Transactions on Automation Science and Engi-
neering, vol. 16, no. 2, pp. 531–541, 2019.

[21] F. Lin, S. Leyffer, and T. Munson, “A two-level approach to large
mixed-integer programs with application to cogeneration in energy-
efficient buildings,” Computational Optimization and Applications,
vol. 65, 09 2016.

[22] A. Jain, T. Thormählen, T. Ritschel, and H.-P. Seidel, “Exploring shape
variations by 3d-model decomposition and part-based recombination,”
Computer Graphics Forum, vol. 31, pp. 631–640, 05 2012.

[23] L. Homem de Mello and A. Sanderson, “A correct and complete
algorithm for the generation of mechanical assembly sequences,” IEEE
Transactions on Robotics and Automation, vol. 7, no. 2, pp. 228–240,
1991.

[24] S. Chakrabarty and J. Wolter, “A structure-oriented approach to
assembly sequence planning,” IEEE Transactions on Robotics and
Automation, vol. 13, no. 1, pp. 14–29, 1997.

	Introduction
	Problem Formulation
	Related Works
	Approach
	Structural Decomposition
	Bottom Up Planning
	Solution Computation and Parallel Construction

	Results
	Experimental Setup
	Comparison on Six Test Structures
	Comparison with Exact Approach on Random Structures

	Conclusions
	References

