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Abstract

Point-cloud registration (PCR) is an important task in
various applications such as robotic manipulation, aug-
mented and virtual reality, SLAM, etc. PCR is an opti-
mization problem involving minimization over two different
types of interdependent variables: transformation param-
eters and point-to-point correspondences. Recent devel-
opments in deep-learning have produced computationally
fast approaches for PCR. The loss functions that are opti-
mized in these networks are based on the error in the trans-
formation parameters. We hypothesize that these methods
would perform significantly better if they calculated their
loss function using correspondence error instead of only
using error in transformation parameters. We define corre-
spondence error as a metric based on incorrectly matched
point pairs. We provide a fundamental explanation for why
this is the case and test our hypothesis by modifying ex-
isting methods to use correspondence-based loss instead of
transformation-based loss. These experiments show that the
modified networks converge faster and register more accu-
rately even at larger misalignment when compared to the
original networks.

1. Introduction

Point cloud registration (PCR), the task of finding the
alignment between pairs of point clouds is often encoun-
tered in several computer vision [15, 2] and robotic appli-
cations [1, 33, 19, 22]. A critical aspect of registration is
determining a correspondance i.e. mapping between points
of first cloud to the points of the second. Most approaches
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Code available at: https://github.com/tzodge/PCR-CMU

Figure 1. When learning to predict the pose parameters, deep-
learning-based methods such as DCP [29] learn correspondence
(mapping between the points of point clouds) implicitly. If
the same networks are trained to explicitly learn correspondence
(DCP corr), the resulting registration is more accurate. Template
point cloud is shown in blue, source point cloud in black. Green
arrows show correct correspondence. Red arrows show incorrect
correspondence.

to registration (e.g., [4]) use simple rules-of-thumb or im-
plement a separate procedure to establish correspondances.
While these approaches have been widely used, they do
suffer from computational complexity impacting their per-
formance to determine pose parameters in real-time. Re-
cent developments in deep learning-based registration ap-
proaches have resulted in faster and, under some circum-
stances, more accurate results [2, 21, 29, 9].

Unlike conventional approaches, most deep learning ap-
proaches directly estimate the pose and often do not explic-
itly estimate point correspondences. Instead, they implicitly
learn the correspondences while being trained. While ex-
ploring the relation between correspondence and registra-
tion, we observed that perturbing the correspondence pro-
duced only small changes in the final pose estimation when
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compared to perturbations in the axis-angle representation
of the rotation (see section 3.1 for more details).

Based on this observation, we hypothesize that higher
registration accuracy can be achieved by training the net-
works to explicitly predict point correspondences instead
of implicitly learning them. In order to test this hypothe-
sis, we modify the loss function of existing registration ap-
proaches and compare the results. To develop a suitable loss
function, we come up with a novel way of posing registra-
tion as a multi-class classification problem. Wherein, each
point in one point cloud is classified as corresponding to
a point in the other point cloud. These modified networks
predict correspondences, from which pose parameters are
then calculated using Horn’s method [11]. We show that the
performance of each network that we modified is substan-
tially improved (see Fig. 1). Notably, these networks give
more accurate registration results when faced with large ini-
tial misalignment and are more robust to partial point cloud
data as compared to the original networks.

Even though recent learning-based methods such as
DCP [29] and RPMNet [36] also calculate correspondence
as an intermediate step in order to calculate pose parame-
ters, the networks are not explicitly trained to learn them.
We show that their networks can register more accurately
when explicitly trained to learn the correspondence.

The key contributions of our work are listed as follows–
• We provide a fundamental reasoning of why explic-

itly predicting correspondence provides better accu-
racy and results in faster convergence and verify it
through extensive experimentation.
• We introduce a new way of formulating point cloud

registration as a multi-class classification problem and
develop a suitable loss using point correspondence.

2. Related Work

2.1. Conventional registration methods

Iterative Closest Points (ICP) [4] is one of the most pop-
ular methods for point cloud registration. ICP iteratively
computes nearest neighbor correspondences and updates
transformation parameters by minimizing the least-squares
error between the correspondences [11]. Over the years,
several variants of ICP have been developed [18]. An im-
portant area of research in this space relates to efficient ways
of finding correspondences, for example point-to-plane cor-
respondences [6], probabilistic correspondences [22, 5, 13,
14], and feature-based correspondences [17, 27]. These
methods are locally optimal and hence perform poorly in
the case of large misalignment.

For large misalignment, stochastic optimization tech-
niques have been developed such as genetic algorithms [23],
particle swarm optimization [28], particle filtering [20, 25]
etc. Another category of methods that deal with large mis-

alignment include globally optimal techniques. A popular
approach is the globally optimal ICP (Go-ICP) [35] that
uses a branch and bound algorithm to find the pose. Re-
cently, mixed integer programming has been used to op-
timize a cost function over transformation parameters and
correspondences simultaneously [26, 12]. These methods
have theoretical guarantees to reach global optima. The fact
that they explicitly optimize over correspondences, moti-
vates our work.

2.2. Deep learning-based registration methods

Some of the recent deep-learning based PCR methods
train a network to directly predict the transformation be-
tween the input point clouds. PointNetLK [2] aligns the
point clouds by minimizing the difference between the
PointNet [16] feature descriptors of two input point clouds.
PCRNet [21], passes the concatenated global feature vec-
tors through a set of fully connected layers to predict the
pose parameters. These methods operate on global point
cloud features and fail to capture the local geometrical in-
trinsics of the points.

In order to capture local geometry, Deep Closest
Point [29] learns to assign embedding to the points in each
point cloud based on its nearest neighbours and attention
mechanism. Further based on the similarity between the
features, a correspondence matrix is generated which cal-
culates transformation parameters that are used to define the
loss function. DCP network architecture is iteratively used
by PRNet [30] to align partial point clouds. This idea of
using a correspondence predictor iteratively is also used by
RPMnet [36], where the network structure uses FGR [38]
feature descriptor unlike DGCNN [31] used by DCP and
PRNet.

Some other methods such as deep global registration
(DGR) [7] and multi view registraiton (MVR) [10], follow
a two step process – (1) they find a set of correspondence
pairs between two sets of 3D points using fully convolu-
tion geometric features (FCGF) [8], and (2) these corre-
spondence pairs are passed through a network which filters
outliers. Note that DGR and MVR only find a subset of all
possible correspondence pairs, and yet register more accu-
rately than methods that directly predict pose parameters.
This observation motivates us to study the effect of explic-
itly training a network to predict all point-point correspon-
dences. A key difference between the approach taken by
MVR and DGR from our approach is that, they take point-
pairs and classify them as inlier/outliers, while our approach
classifies each point in one set (source) as belonging to one
of multiple available classes (points in the other set)

3. Mathematical Formulation
PCR is generally posed as an optimization problem.

Consider two point clouds X = [x1,x2, ...,xNx ] ∈ R3×Nx



Figure 2. Graph showing percentage of perturbation to ‘point-
correspondence’ and ‘rotation vector’ vs alignment error. The
plot shows that the alignment error is low even with as high as
40% wrong correspondences. On the other hand the alignment er-
ror quickly increases with perturbation to the rotation parameters.
Thus, we hypothesize that training the networks to learn corre-
spondences would have better registration accuracy than learning
pose parameters.

and Y = [y1,y2, ...,yNy
] ∈ R3×Ny containining Nx and

Ny points respectively, where xi ∈ R3 and yi ∈ R3

are the points in the respective point clouds and generally,
Nx 6= Ny . The ground truth transformation, R∗ ∈ SO(3)
and t∗ ∈ R3, that aligns the two point clouds can be repre-
sented as

R∗, t∗ = argmin
R,t

(
Nx∑
i=1

||Rxi + t− yπ(xi)||2

)
, (1)

where || . . . ||2 is the L2 norm and, π denotes a function
such that π(xi) is the index of the point corresponding to
xi in Y . This function can be represented by a binary ma-
trix known as correspondence matrix C ∈ RNy×Nx , where
Ci,j ∈ {0, 1} ∀ i ∈ [1, . . . , Nx] and j ∈ [1, . . . , Ny].
Cj,i = 1 implies that yj corresponds to xi. Or, yj =

yπ(xi) = Y C :,i. Here C :,i represents the ith column of
C. Since the correspondence is unknown, registration is re-
stated as,

R∗, t∗,C∗ = argmin
R,t,C

(
Nx∑
i=1

||Rxi + t− Y C :,i||2

)
(2)

Where C∗ is the ground truth correspondence matrix.
Note that Ŷ = Y C denotes the rearranged Y such that ith

point of X corresponds to ith point of Ŷ .

3.1. Robustness of correspondences Vs robustness
of transformations

To understand the effect of wrong correspondences on
alignment, we perform the following experiment. We ini-
tially sample n points randomly from a unit 3D cube and
denote it as point cloud X . We then transform X with a
random but known rotation R∗ to create point cloud X′

= R∗X . For convenience, we convert R∗ to a rotation

vector form v∗ ∈ R3 and add p% corruption to generate
vpert = v∗+vcorrupt. We then calculate the error between
Rpert and R∗. This is noted as alignment error between
corrupted rotation and ground truth rotation. We gradually
increase the percentage corruption and calculate the corre-
sponding alignment error (Figure 2). To observe the robust-
ness of the correspondences, in another independent exper-
iment, we randomly corrupt p% of the ground truth corre-
spondence and calculate the resulting rotation matrix based
on perturbed correspondences using Horn’s method 3 [11].
The error between the ground truth rotation and perturbed
rotation is then calculated. We gradually increase the per-
centage corruption and observe it’s effect on the rotation
error. We observe that even if 40% of the correspondences
are wrong, the alignment error is ≈ 5◦.

Based on this observation we hypothesize that if a net-
work is trained explicitly to predict correspondence, the net-
work will align point clouds more accurately than a network
with similar architecture but trained to predict pose.

4. PCR as multi-class classification
To test our hypothesis, we first develop a suitable loss

function that can explicitly learn the correspondences. An
obvious choice could be a mean square error or absolute
error between predicted and ground truth correspondence
but these loss functions do not provide any strong physical
intuition about the correspondence.

We introduce a novel way of treating the task of corre-
spondence assignment as a multi-class classification prob-
lem. We treat each point in Y to be a different class and
each point in X belongs to one of the classes i.e. Nx ex-
amples and Ny classes. Note that each example needs to
belong to at least one class but there can be classes with
no corresponding example. This framework is particularly
suitable to register partial point clouds where, ∀xi,∃yj but
converse need not be true. Note that this is fundamentally
different from MVR [10], where each correspondence pair
is classified as a binary: inlier or outlier and the correspon-
dence matrix constraints are not respected.

We consider a general framework that first generates per
point features FX = [fx1

,fx2
, ...,fxNx

] ∈ RNe×Nx and
F Y = [fy1 ,fy2 , ...,fyNy

] ∈ RNe×Ny for input point
clouds X and Y where f j ∈ RNe×1 and Ne is the embed-
ding space dimension. We generate a soft correspondence
matrix based on a differentiable distance metric in the fea-
ture space 4. The metric can be distance-based as introduced

3Note that Horn’s method is just one of many closed form approaches
to obtain transformation given corresponding pairs of point clouds. The
results will be identical if Horn’s method is replaced by weighted SVD, or
Arun’s method [3].

4The soft correspondence is similar to the matrix used in conventional
registration approaches [14, 12, 26, 5], where every element of the corre-
spondence matrix denotes the probability of matching.



Figure 3. a) Deep Global Registration [7], b) Possible extension of
our approach where two stage process of DGR can be merged into
a single step thus resulting in a faster registration. Note that in our
current work, networks output C ∈ RNy×Nx we assume that the
data can be partial but there are no outliers

by MVR [10] or projection-based as suggested in DCP [29].
Without any loss of generality, we choose DCP’s approach
to generate a soft correspondence matrix i.e. a matrix where
each element denotes probability of a correspondence be-
tween point pairs as C = softmax(F T

Y FX). We com-
pare C with a ground truth correspondence matrix C∗. We
define the ground-truth correspondence as nearest neighbor
of a point xi in Y when X and Y are aligned. It is worth
noting that this is not a reversible mapping i.e. if y1 ∈ Y
is the nearest neighbor of x1, it is possible that the nearest
neighbor of y1 in X is xj , where j 6= 1. This adds a con-
straint on the correspondence matrix that each the sum of
the elements of each column should add up to one.

The multi-class classification framework allows us to use
a cross-entropy loss, LCE . This loss function implicitly ap-
plies the constraint that sum of the elements of a column
should be one unlike binary cross entropy (BCE). For the
sake of convenience of notation, we define C′ = F T

Y FX

LCE(C
′,C∗) = −

Nx∑
i=1

log


exp

(
Ny∑
j=1

C′j,iC
∗
j,i

)
Ny∑
j=1

exp(C′j,i)


While beyond the scope of this paper, it is worth not-

ing that our framework can be further modified to add an
additional class to classify an xi as an outlier. If we in-
corporate an extra class for outliers in the correspondence
matrix C ∈ RNy+1×Nx , this becomes a single-step gen-
eralised version of the two step process used by DGR (see
Fig. 3).

5. Experimental setup
We consider RPMNet [36], DCP [29], and PCRNet [21]

to study the effects of training the network to learn corre-
spondence vs training the network to learn pose parameters.

Note that these methods were originally developed to reg-
ister point clouds with small (±45 ◦) initial misalignment.
From here on we follow the notation that method is the net-
work trained with loss function suggested in the original
paper while method corr is trained using our loss function
(cross-entropy on correspondence matrix). We train and test
all these methods and method corrs on ModelNet40 [32]
dataset.

DCP [29] and RPMNet [36] generate an implicit cor-
respondence based on the similarity between per-point fea-
tures of the input point clouds (Fig. 4). This intermediate
correspondence is used to find the transformation parame-
ters between input point clouds using Horn’s method [11]
and weighted SVD method [36] respectively. For a net-
work to implicitly learn correspondence, we define the loss
as a function of the output transformation as suggested by
the respective method. While to explicitly learn the corre-
spondence, we define the loss as a function of intermediate
correspondence as defined in Sec. 4.

We sample n number of points from a point cloud
chosen from training data and denote this as point cloud
X . We generate a copy of X and shuffle the order of
points to generate Y ′. To sample a rotation, we randomly
choose a unit vector in R3 and an angle θ ∈ U(−θ0, θ0),
this axis and angle is used to generate a rotation vector
which is further transformed into a ground-truth rotation
matrix R∗. Here, θ0 depends upon the specific experi-
ment and U(a, b) denotes a uniform distribution in the range
[a, b]. Further we generate a ground-truth translation vector
t∗ ∈ [U(−0.5, 0.5),U(−0.5, 0.5),U(−0.5, 0.5)]. Now Y ′

is transformed with R∗ and t∗ to generate Y . To gener-
ate the ground-truth correspondence matrix C∗, we find the
nearest neighbour of each xi ∈X in Y ′. If y′j ∈ Y is the
nearest neighbour of xi then C∗(j, i) is set to 1 and other
elements of ith column are set to 0.

To generate the partial point clouds, we randomly choose
a plane passing through the centroid of the original point
cloud of source (X). We then randomly choose either up
or down directtion of the plane and remove a predetermined
number of points from the source farthest from the plane.

5.1. DCP Vs DCP corr

DCP uses DGCNN [31] features along with transformer
network-based attention and co-attention mechanism to
generate interrelated per point features of a point cloud.
These features are used to generate probability distribution
of source points on the target points matrix C. They fur-
ther calculate an intermediate representation of target point
cloud Y as Ŷ = CY . DCP uses Horn’s method to estimate
the rotation matrix R and translation t which minimizes the
distance between corresponding points of Ŷ and X . The
loss for DCP is defined as

LDCP = ||RTR∗ − I||22 + ||t− t∗||22 (3)



Figure 4. DCP and RPMNet architctures internally calculate the
correspondence matrix C . This correspondence matrix is further
used along with X,Y to calculate R, t. In order to make these
networks explicitly learn correspondence, we use C along with
ground truth C∗ to calculate cross entropy loss. Since PCRNet
does not explicitly calculate C, we modify the network architec-
ture and compare the PointNet’s per-point features to generate the
correspondence matrix.

For all the comparisons between DCP and DCP corr, we
use learning rate = 0.001 as recommended by DCP.

DCP corr uses the correspondence matrix obtained in
the intermediate step and compares it with ground truth cor-
respondence using cross entropy

LDCP corr = cross entropy(C,C∗) (4)

5.2. RPMNet vs RPMNet corr

RPMNet follows an iterative procedure. In each itera-
tion, the point clouds X and Y and transformation from
previous iterations are passed into the feature extraction net-
work which computes point-wise features. The extracted
features are then used to estimate the correspondence matrix
which is further refined using Sinkhorn [24] normalization
layer in an unsupervised manner. In order to estimate the
transformation parameters, the target points Y are weighted
with the correspondence matrix weights C to obtain puta-
tive source correspondences Ŷ = Y C. RPMNet corr uses

this correspondence matrix to define the cross entropy loss
(see Fig. 4). RPMNet evaluates transformation parameters
R, t based on X, Ŷ and C. These transformation parame-
ters are then used to define the primary loss function Lreg ,

Lreg =
1

Nx

Nx∑
i=1

|(R∗xi + t∗)− (Rxi + t)|1 (5)

RPMNet uses an additional unsupervised loss function
Linlier which forces the network to predict majority of the
correspondences as inliers. These two loss functions to-
gether form LRPMNet = Lreg + Linlier.

Both RPMNet and RPMNet corr are trained with the
same hyper-parameters (as recommended in [36]), except
for the learning rate. RPMNet corr is trained with an ini-
tial learning rate of 0.01 which decays upto 0.0001 during
training. We tried a higher learning for both the methods but
training of RPMNet is unstable for higher learning rates.

5.3. PCRNet Vs PCRNet Corr

PCRNet is a correspondence-free network that estimates
registration parameters given a pair of input point clouds
(X and Y ). As shown in Fig. 4, PCRNet uses Point-
Net [16] as a backbone to compute the point-wise features
of each input point cloud arranged in a siamese architecture.
In order to avoid input permutations, a symmetry function
(max-pool) is operated on point-wise features to obtain a
global feature vector (∈ R1x1024). PCRNet concatenates
the global feature vectors of both the inputs and uses a set
of fully connected layers to regress the registration param-
eters. Rather than defining the loss function on the ground
truth transformation, PCRNet uses chamfer distance (CD)
as the loss function,

CD(X,Y ) =
1

Nx

∑
xi∈X

min
yj∈Y

‖xi − yj‖2+

1

Ny

∑
yj∈Y

min
xi∈X

‖yj − xi‖2 (6)

CD calculates the average closest distance between the tem-
plate X and the point cloud obtained by applying predicted
transformation on Y .

Even though PCRNet uses an unsupervised loss func-
tion, CD is a function of X , Y , R and t. In other words,
the training of PCRNet again depends on the accuracy of
R, t when compared to the ground truth.

6. Results
In this section, we present results of different existing

approaches, referred to as method, and provide compar-
isons to versions of those approaches modified by train-
ing using our correspondence based loss – referred to as



Figure 5. Results of experiments on DCP vs DCP corr.

method corr. We specifically highlight the improvement
shown by method corr compared to method to large ini-
tial misalignment errors as well as ability to register partial
point-clouds.

Table 1. Effect of initial misalignment on registration accuracy
Rotation Rotation MAE (deg) Correspondence (%)

range (deg) DCP DCP corr DCP DCP corr
0-30 0.99 0.005 8.90 99.99
30-60 1.55 0.008 6.12 99.97
60-90 1.69 0.010 5.78 99.96

90-120 1.56 0.010 5.69 99.96
120-150 1.62 0.010 5.66 99.95
150-180 1.64 0.010 5.60 99.96

6.1. DCP Vs DCP corr

The authors of DCP, consider 1024 points in all of their
experiments. Due to limited GPU space, we re-ran all the
DCP experiments using 512 points with the same hyper-
parameters including learning rate for both. We sample
rotations from SO(3) with rotation vectors instead of Eu-
ler angles. This helped us to train DCP even for large
misalignment. For different experimental settings Fig. 5
shows the comparison between DCP and DCP corr. The
first column shows that every training procedure converged.
Second show the accuracy of correspondence estimation of
both the methods. Third column shows rotation error as an
RMSE over Euler angle error and fourth column denotes
translation error.

Experiment 1.1 We have Nx = 512 points in the source
andNy = 512 points in the target. The initial misalignment
between them is uniformly sampled from SO(3) while the
translation is bound in cube of unit size centered on origin.
As observed in Fig. 5 we can see that DCP corr converges
faster than DCP and is more accurate.

Experiment 1.2 The results of this section are visualized
in Fig. 1. We haveNx = 358 points in the source andNy =
512 points in the target. The source point cloud is made
partial as described in Sec. 5 . We observe that even though
DCP’s loss function converges, the RMSE rotation error is
14.7◦ while the rotation error of DCP corr is 0.51◦. This
can be considered as an empirical evidence that multi-class
classification approach can deal with partial data without
any major modification to the network architecture.

Experiment 1.3 In this experiment, we compare DCP
to DCP corr for the specific task DCP was developed for,
i.e. full-to-full point cloud registration for initial misalign-
ment in the range of [−45◦,+45◦]. We observe that both
the networks converge, and the rotation accuracy of DCP
and DCP corr are 1.036◦ and 0.034◦ respectively.

Experiment 1.4 In this experiment we observe the ef-
fect of initial misalignment on registration accuracy of DCP
and DCP corr trained for arbitrary initial misalignment (Ta-
ble 1). For this experiment, we set the translation to zero
and only allow a rotational misalignment between the in-
put point clouds. We observe that DCP corr always regis-
ters more accurately than DCP, which is attributed to the



remarkably high percentage of correct correspondence.

6.2. RPMNet Vs RPMNet corr

We present the comparisons between RPMNet and
RPMNet corr in Fig. 6. Unlike the previous experiment
with DCP, the rotation error metric used to evaluate these
experiments is the mean absolute anisotropic rotation error
also known as axis angle error. We chose this metric to be
compliant with the choice of the authors of RPMNet [36].
Likewise, we present the Chamfer distance (CD) between
registered point clouds, in the fourth column of Fig. 6,
as suggested by the authors of RPMNet [36]. The initial
misalignment in translation is sampled uniformly between
[−0.5, 0.5].

Experiment 2.1 In this experiment, both the point
clouds have Nx = Ny = 1024 points. The misalignment
between these clouds is uniformly sampled from SO(3). It
can be observed that the rotation error converges faster and
to a lower value of 0.059◦ with RPMNet corr as compared
to an error of 0.56◦ for RPMNet.

Experiment 2.2 To test the ability of multi-class clas-
sification approach to handle partial point clouds, in this
experiment we generate the partial source point cloud by
retaining 70% of the points above a random plane such that
Nx = 717 and Ny = 1024. We carry out this experiment
with uniform sampling from SO(3). Note that, even though
one of the key features of RPMNet is the ability to deal with
partial point clouds, RPMNet corr has higher registration
accuracy of 0.34◦ compared to 3.79◦ of RPMNet.

Experiment 2.3 RPMNet is specifically designed for
[−45◦,+45◦] initial misalignment. Even in this range, we
observe that RPMNet corr converges faster and registers
more accurately. We also observe that eventually RPMNet
reaches 96% correspondence accuracy. We believe that the
RPMNet’s Sinkhorn algorithm along with the unsupervised
loss on correspondence (Linlier), pushes the intermediate
correspondence matrix towards the ground truth correspon-
dence matrix in an unsupervised manner.

Experiment 2.4 In this experiment we study the ef-
fect of initial misalignment on the registration accuracy
of RPMNet and RPMNet corr. Both the networks are
trained with arbitrary initial misalignment in the range of
[−180◦,+180◦] between the input point clouds. In this ex-
periment, we set the translation to zero and only allow a ro-
tational misalignment between the input point clouds. We
calculate Mean Absolute Error (MAE) between predicted
and ground truth rotation in Euler angles. We observe from
Table 2 that the MAE for rotation is always lower for RPM-
Net corr when compared to RPMNet.

6.3. PCRNet Vs PCRNet corr

The results showing the comparison between PCRNet
and PCRNet corr are shown in 7. We only provide a ro-

Table 2. Effect of initial misalignment on registration accuracy
Rotation Correspondence Chamfer distance

Rotation MAE (deg) (%) MSE× 1E-5

range (deg) RPMNet RPMNet corr RPMNet RPMNet corr RPMNet RPMNet corr

0-30 0.52 0.011 26.96 98.28 8.51 0.56

30-60 0.58 0.013 26.97 98.28 8.48 0.56

60-90 0.69 0.015 26.96 98.28 8.51 0.55

90-120 0.89 0.26 26.96 98.18 8.49 0.68

120-150 1.01 0.47 26.97 98.15 9.36 0.12

150-180 0.96 0.66 26.97 98.07 8.68 0.79

tational misalignment between the input point clouds.
Experiment 3.1 We consider Nx = Ny = 1024 points

for both the input point clouds. We train PCRNet with the
hyper-parameters recommended in [21] and compare it with
PCRNet corr. Note that PCRNet corr has fewer tunable pa-
rameters than PCRNet due to the removal of MLPs. We
observe that both the approaches converge to ≈ 5◦ rota-
tion accuracy. Based on the results of this experiment, we
believe that PCRNet lacks depth or number of parameters
to achieve higher accuracy. Another reason to believe this
is, even after doing a thorough hyper-parameter search, we
could not achieve correspondence accuracy of ≥ 70%.

Experiment 3.2 In this experiment, we have two point
clouds with 100 points each. The initial misalignment be-
tween them is in the range of [−45◦, 45◦]. We observe that
PCRNet converges to a rotation accuracy of 9.97◦ com-
pared to 1.8◦ of PCRNet corr.

Experiment 3.3 We repeat the previous experiment but
use an initial misalignment that is uniformly sampled from
SO(3). We observe that PCRNet corr outperforms PCR-
Net and is able to learn correspondences and the rotation
accuracy reaches 21◦ at the end of 250 epochs.

7. Conclusion and Future Work

In this paper we demonstrate that higher registration ac-
curacy can be achieved if a network is trained to explicitly
learn correspondences instead of learning them implicitly
by training on registration parameters. This paper adds to
the ever-increasing body of work demonstrating how care-
fully selecting the desired output of a data-driven approach
can lead to drastic improvements in performance. We ob-
serve faster convergence, higher registration accuracy and
ability to register partial point clouds when networks are
explicitly trained to learn correspondence instead of pose
parameters. We also developed a new way to approach reg-
istration as a multi-class classification task.

While in this work we have limited ourselves to results
on ModelNet40, we plan to extend it to real world datasets
such as 3DMatch [37] and Sun3d [34]. In addition, future
work will involve extended the multi-class classification ap-
proach to deal with outliers in the point clouds.



Figure 6. Results of experiments on RPMNet vs RPMNet corr

Figure 7. Results of experiments on PCRNet Vs PCRNet corr
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