
Fast Point to Mesh Distance by Domain Voxelization

Geordan Gutow and Howie Choset

Abstract— Computing the distance from a point to a triangle
mesh is a key computational step in robotics pipelines such as
registration and collision detection, with applications to path
planning, SLAM, and RGB-D vision. Numerous techniques
to accelerate this computation have been developed, many
of which use a cheap pre-processing step to construct a
hierarchical decomposition of the mesh. If the mesh is fixed
and known ahead of time, there is an opportunity to conduct
more expensive pre-computations to accelerate the subsequent
distance queries. This work presents a voxelization approach,
implemented on both CPU and GPU, to compute point to
mesh distance that constructs for each voxel a near-minimal
set of triangles that is guaranteed to include every triangle that
is closest to at least one point in the voxel. Theoretical and
numerical comparisons with six alternative distance algorithms
demonstrate the speed advantages of the proposed method.

I. INTRODUCTION

Computing the distance from a point to the surface of a
triangular mesh is a key step in many robotics algorithms,
including collision checking [1]–[4] and point cloud regis-
tration [5]–[8]. In many applications, distance computations
represent a large part of the runtime expense of the algorithm.
A variety of approximate point to mesh distance techniques
exist that efficiently pre-compute the distance to the mesh at
numerous selected points in the domain, allowing very fast
approximate distance queries via interpolation. This includes
scan-conversion as in [9], Eikonal solvers like [10], and
dedicated distance transform algorithms like [11].

For fast exact distance computations, the standard solution
is to identify a subset of the triangles in the mesh that may be
closest to the query point and compute the distance to all of
them. Data structures such as k-d trees [12], [13], octrees [7],
binary space partitions [2], or bounding volume hierarchies
[1], [4], [12] are commonly used to accelerate these queries
by pruning triangles that cannot contain the closest point. The
”ideal” data structure for such acceleration is a representation
of the Generalized Voronoi Diagram (GVD) of the mesh,
which labels locations with their closest triangle. With the
GVD, a distance query reduces to looking up the nearest
triangle and computing a single point to triangle distance.
Constructing and storing the exact, or even approximate,
GVD of a triangle mesh is challenging [14]–[16].

Instead, one may discretize the domain into voxels and
precompute for each voxel a set of triangles guaranteed
to include all triangles that are closest to any one point
in the voxel. Similar tactics are used in [2], [8], [17].
A distance query then requires testing the point against

All authors are with the CMU Robotics Institute. Emails:
{ggutow,choset}@andrew.cmu.edu. This work was supported
by AFRL and the AFOSR.

Fig. 1. The green triangles are those that must be tested for points in the
blue voxel. In red are the triangles the proposed algorithm proved do not
need to be included.

every triangle in the set. The query speed of a voxelization
scheme is therefore dominated by the size of the set. In
general, one can reduce the size of this set by shrinking
the size of the voxels at the cost of increased memory
and construction time. Our contribution is an algorithm to
compute for a voxel a near-minimal set of triangles that
is nevertheless guaranteed to include the triangle closest
to any given point in the voxel. An example set is shown
in figure 1. Proofs are presented that the resulting set is
no larger than that obtained by the approaches of [8] and
[2]. Numerical results are provided showing significantly
faster distance queries than the voxelizations of [2], [17],
as well as than standard space partitioning and bounding
volume hierarchy techniques. A GPU implementation of
the proposed approach is demonstrated, running orders of
magnitude faster than the CPU version. CPU and GPU
implementations of the voxelized distance query are available
on Github: https://github.com/biorobotics/point2mesh-prune.

II. RELATED WORK

Hierarchical structures are commonly used to identify a
subset of the triangles of the mesh that may be closest to
the query point. This has significant overlap with collision
testing and ray-tracing, and often a solution to one problem
can also be used to solve the other two. An idea common to
many works is that of the bounding volume hierarchy (BVH):
a simple shape enclosing the full geometry is recursively
subdivided into smaller enclosures. Larssen [1] proposed
using a tree of Rectangle Swept Spheres (RSS) for the
distance query problem, as such shapes can more tightly
fit geometries such as triangles than alternatives like axis-
aligned bounding boxes (AABB). Lauterbach et al. present

https://github.com/biorobotics/point2mesh-prune


efficient GPU implementations of tight fitting BVHs on
the GPU, including both RSS and oriented bounding box
volumes [3]. Much more recently, Li et al. describe RSS
fitting and splitting methods that better handle triangles of
widely varying face sizes [4]. This algorithm is incorporated
into the commercial IPS path planner.

The tight fit of RSSs comes at the cost of complicated
tree construction, so other bounding volumes remain in use.
The popular Computational Geometry Algorithms Library
(CGAL) incorporates an AABB tree for both distance and
intersection queries, which leverages a kd-tree of points on
the surface of the mesh to further accelerate distance queries
by providing a cheap upper bound on the distance [12].
AABB tree distance queries are used by the R-LOAM and
MA-LOAM SLAM pipelines for comparing observed point
clouds with the reference model [18], [19].

The kd-tree is a special case of a binary space partition
(BSP) tree [20]. Where a BVH splits primitives by creating
volumes that enclose ever smaller subsets of the primitives,
a spatial partition instead selects hyperplanes that divide the
domain and records which side the primitives lie on. In a
k-d tree these planes are restricted to be perpendicular to the
axes. BSP trees can also be used directly for distance queries
as in [2], in which the planes are selected from the faces of
the mesh. Spatial partitions need not be binary; the octree and
its higher dimensional generalizations are spatial partitions
in which the separating hyperplanes are axis aligned but
2dimension partitions are made at once rather than just 2.
Octrees are used for distance computations in the Hausdorff
distance calculation algorithm of [21] and the point cloud to
mesh registration pipeline described by [7]. Drost shows how
using a hash table to index the octree reduces the overhead
of traversing the tree for point cloud to point cloud nearest
neighbor queries in [22].

Voxel decompositions have previously appeared for sev-
eral applications. The VCG Library [23] implements a
number of spatial index data structures that can be used
for point to mesh distance queries, including a voxel grid
that was used to accelerate the one-sided Hausdorff distance
calculation in the Metro tool for comparing two meshes
[17]. The Hausdorff distance calculation in [21] leverages a
voxel decomposition as well as the octree mentioned earlier.
The one-sided triangle to quad mesh Hausdorff distance
calculation of [24] similarly fuses both a bounding volume
hierarchy and a voxel decomposition to efficiently find the
nearest quad element to a query point. Hauth et al. describe
a point to mesh distance and collision query algorithm that
voxelizes the domain and records links from empty voxels
to the non-empty voxels containing the relevant triangles
[2]. Recently, Mejia-Parra et al. [8] applied a perfect spatial
hash [25] to reduce the memory footprint of a voxel grid
for pointcloud to mesh registration via ICP; this maintains
constant time look-up of nearby triangles while eliminating
the memory cost of empty cells. The tradeoff is that points
not within voxels that intersect the mesh surface cannot have
their distances computed.

III. PRELIMINARIES

Three vertices vi ∈ R3 define a triangle T ⊂ R3. Consider
a rigid triangular mesh M defined as a set of triangles. The
surface of the mesh S =

⋃
Ti∈M Ti ⊂ R3. The task is to

compute the shortest distance d∗ between a query point q ∈
D ⊂ R3, and any point c ∈ S:

d∗=min
T∈M

min
x∈T
||x− q||2 (1)

M need not be watertight. For triangle T , d(T, q) =
minx∈T ||x− q||2 can be obtained by computing the closest
point x (using e.g. algorithmClosestPtPointTriangle from
[26]), or slightly more efficiently via direct calculation.
Suppose q is restricted to lie in some axis-aligned cube with
side length ∆ (i.e. a voxel V ⊂ D). We seek a small set of
triangles C ⊆M such that minT∈C d(T, q) = d∗. Let Sϕ(ρ)
be the sphere of radius ρ centered on the voxel ϕ, and let
Bϕ(ρ) be the ball of radius ρ centered on the voxel ϕ.

IV. METHOD

Algorithm 1 GetTriangles
Require: the corner cm ∈ R3 of V with smallest coordi-

nates, side length ∆, mesh M
Ensure: T ∈ C∗

2 if ∃p ∈ V : T = argminτ∈M d(τ, p)
corners← the corners of V
I ← {Ti ∈M : Ti

⋂
V ̸= ∅}

if I is ∅ then
I ← argminT∈M miny∈V d(T, y)

end if
l1 ← minT∈I maxy∈corners d(T, y), s1 ← ∆+ 2l1
b1 ← axis aligned box centered at cm+ < ∆,∆,∆ > /2
with side length s1
C1 ← {Ti ∈M : Ti

⋂
B1 ̸= ∅}

l2 ← minT∈C1
maxy∈corners d(T, y)

C∗
2 ← {T ∈ C1 : l2 ≥ miny∈V d(T, y)}

Fig. 2. A 2D projection of the pruning process. Triangle TC is provably
not closest to any point in the black voxel and so can be discarded.

The proposed method, presented in pseudocode as Algo-
rithm 1 and schematically in figure 2, obtains a tight upper
bound on the shortest distance from any point in V to the
mesh, then discards all triangles that are no closer to any
point in V than that bound.



First collect all triangles that intersect the current voxel:
I = {Ti ∈ M : Ti

⋂
V ̸= ∅}. If I is empty, add any one

triangle from the mesh. A good choice is the triangle whose
minimum distance to the boundary of V is smallest. Then
compute the one-sided Hausdorff distance from the triangles
in I to the voxel:

l1 = min
T∈I

max
y∈V

d(T, y) (2)

Lemma 1: The maximization in minT∈I maxy∈V d(T, y)
need consider only the corners of V .

Proof:
This follows from the convexity of the cube: Assume q ∈

V is farther from x ∈ T ∈ M than all corners of V . Then,
all corners lie on the interior of Sx(q), the sphere centered at
x intersecting q. V is convex, so all points in V , including q,
must also be on the interior of Sx(q). But by assumption q
lies on the surface of Sx(q). The assumption that q is farther
from x than all corners is falsified.

So for any point x on a triangle T , the furthest point in
V from x is not farther than at least one of the corners of
V . Thus maxy∈V d(T, y) = maxy∈corners(V ) d(T, y).
So in practice, compute the distance from each triangle in I
to each of the corners of V , and set l1 to the largest distance
found. Then every point in V is within l1 of at least one
triangle in I , so l1 is an upper bound on the shortest distance
from any point in V to the mesh. In Figure 2, I = {TA}
and l1 is the distance from TA to the bottom right corner of
the voxel (dark square).

Let C∗
1 be the set of triangles that would be retained using

the l1 bound. C∗
1 consists of the triangles intersecting the

cube swept sphere formed from the union of V and a sphere
of radius l1 whose center is swept over the boundary of V .
The outline of C∗

1 is shown by the wide black line in figure
2. A simple, conservative approximation C1 is every triangle
intersecting the axis aligned bounding box of the cube swept
sphere, which is a cube whose faces are l1 away from the
nearest face of V . This box, b1, is a cube of side length
∆+2 ∗ l1, and so C1 = {Ti ∈M : Ti

⋂
b1 ̸= ∅}. Note that

C1 ⊇ I . b1 is shown in figure 2 as the light square, and C1

contains TA, TB , TC .
This naturally suggests a new bound l2:

l2 = min
T∈C1

max
y∈V

d(T, y) (3)

Again, in practice only the corners of V need be considered.
Note that l2 is the tightest possible bound of this form:

Lemma 2: l2 = minT∈M maxy∈V d(T, y)
Proof: Let Tm ∈ M : Tm /∈ C1. Assume

maxy∈V d(Tm, y) < l2. Then miny∈V d(Tm, y) ≤ l2 ≤
l1. But by construction, C1 contains all triangles T s.t.
miny ∈ V d(T, y) ≤ l1, which contradicts the assumption
that Tm was not in C1. So no triangle Tm exists in M that
yields maxy∈V d(Tm, y) < l2.
This bound yields the final set of triangles, C∗

2 = {T ∈ C1 :
l2 ≥ miny∈V d(T, y)}, consisting of those triangles in C1

whose minimum distance to the voxel is not more than the

bound. In figure 2, l2 = l1 and so TC will not be included
in C∗

2 , but TB will.

V. COMPARISON OF VOXELIZATION SCHEMES

First, consider the voxelization in [8]. Query points farther
from the mesh than ∆ are considered ”outliers” and the
voxelization need not produce correct distances for such
points. As a result, only voxels such that D ∩ S ̸= ∅ are
needed. Each voxel is assigned the triangles that intersect
it or an adjacent voxel. This is identical to the set C1 for
l1 = ∆. The proposed method, if distances greater than ∆
may be ignored, must produce l1 = ∆ at worst and can
have l1 < ∆: a triangle bisecting the voxel parallel to a face
yields l1 ≤ ∆/2. Moreover, C∗

2 ⊆ C1. Thus in the worst case
the same triangle sets are obtained, and for some voxels a
smaller triangle set will be found by the proposed method.

A more general voxelization scheme, dubbed the ”Linked
Voxel Structure,” is presented in [2]. The ”extended” version
is specific to collision detection. The Linked Voxel Structure
distinguishes between empty and non-empty voxels:

Definition 1 (Non-empty Voxel): A voxel V is called
”non-empty” if its circumscribed sphere SV (

√
3
2 ∆) intersects

at least one triangle in M .
Note that this a slightly stronger condition than the non-

intersection used in [8]. A non-empty voxel is assigned all
triangles CL intersecting SV (3

√
3
2 ∆).

Fig. 3. Schematic showing the triangles used to prove that for a non-empty
voxel C∗

2 ⊆ CL. The black square is the voxel, the small black circle is the
circumscribed sphere of the voxel, and the large black circle is the sphere
within which the linked voxel structure stores triangles. The grey square is
the largest possible box b1.

Lemma 3: For a non-empty voxel V , C∗
2 (V ) ⊆ CL(V ).

Proof: Suppose voxel V is non-empty. Then ∃T1 ∈M
in the circumscribed sphere of V (see figure 3). Therefore,
maxy∈V d(T1, y) ≤

√
3∆. If ∃TI ∈ M intersecting V ,

l1 ≤
√
3∆ as well. And if no intersecting triangles exist,

the proposed method will set l1 based on the triangle closest
to the surface of V . l1 can be no larger than the distance
from the closest triangle to the surface, plus the diagonal of
V . The closest triangle is no farther away than T1 is, and
miny∈V d(T1, y) = (

√
3−1)∆2 . So l1 ≤ (

√
3−1)∆2 +

√
3∆ =

(3
√
3− 1)∆2 . b1 then has edge length ≤ 3

√
3∆; the sphere

used by the Linked Voxel structure is the inscribed sphere



of the largest possible b1, so C1 ⊇ CL in the worst case.
Suppose ∃Te ∈ C1 : Te /∈ CL. Te must be in one of the
”corner regions” of b1 that are outside the inscribed sphere;
the minimum distance from Te to the voxel occurs if Te lies
on the diagonal of b1, almost touching the surface of the
inscribed sphere. Thus miny∈V d(Te, y) > 3

√
3
2 ∆−

√
3
2 ∆ =√

3∆. If TI exists then this is strictly greater than l1 ≥ l2
and so Te is not in C∗

2 . If a triangle does not intersect V ,
note that T1 must be in C1 and so l2 ≤

√
3∆. Again Te is

not in C∗
2 . Therefore, C∗

2 ⊆ CL.
The linked voxel structure handles ”empty” voxels by

recording a set of nearby non-empty voxels whose associated
triangles include every triangle closest to a point in V . This
set is determined by first finding the smallest r ∈ N such that
at least one voxel intersecting SV (∆r) is non-empty. The
original paper then recorded all voxels that are non-empty
and intersect BV (∆(r + 3)), claiming that this is sufficient.

Fig. 4. A scenario in which the linked voxel structure presented in [2]
misses a triangle. T2 is the closest triangle to the starred point, but is not
linked to.

This is insufficient for certain cases. As [2] correctly notes,
the triangle in the first located non-empty voxel establishes
an upper bound of ∆(r+ 3

2

√
3) on the distance from a point

in V to the mesh. However it is not sufficient to consider
triangles up to a distance of ∆(r + 3) > ∆(r + 3

2

√
3)

from the center of V . Instead one must capture all triangles
within ∆(r + 3

2

√
3) of the surface of V . Consider a mesh

containing two triangles lying on the extended diagonal of
V . The scenario is shown in figure 4. The first triangle T1 is
at exactly radius ∆(r +

√
3), while the second T2 is on the

opposite side of V at radius arbitrarily larger than ∆(r+3).
T2 will not be captured by the linked voxel structure. The
distance from T1 to the corner closest to T2 is ∆(r+ 3

2

√
3),

precisely the upper bound identified by [2]. But the distance
from T2 to that corner can be as little as ∆(r+3−

√
3
2 ), which

is smaller. For correctness the linked voxel structure should
link to the set LV = {N ∈ D : N ∩BV (∆(r + 4)) ̸= ∅ &
CL(N) ̸= ∅}, non-empty voxels intersecting BV (∆(r+4)).

Lemma 4: For an empty voxel, C∗
2 ⊆ CL(V ) =⋃

N∈LV
CL(N), the triangles in the corrected linked voxels.

Proof: Let ∆r, r ∈ N, be the radius at which the first

non-empty voxel, N1, was found. Let T1 be a triangle in the
circumscribed sphere of N1. The distance from a point in V
to M is not larger than the distance from that point to T1, so
l2 ≤ l1 ≤ maxy∈V d(T1, y) ≤ ∆(r+ 3

2

√
3), where the upper

bound is obtained for T1 along the diagonal of N1 (of length√
3∆) from the discrete sphere (a further r∆ to the center

of V ), and N1 lies along the diagonal of V1 (an additional√
3
2 ∆ to the far corner of V ). Therefore if Ti ∈ C∗

2 then
miny∈V d(Ti, y) ≤ ∆(r + 3

2

√
3).

Let L′ = {T ∈ M : T ∩ BV (∆(r + 4)) ̸= ∅} ⊆ CL(V ).

Ti /∈ L′ =⇒ miny∈V d(Ti, y) > ∆(r+4)−
√

(3)

2 ∆, which
is > the upper bound for a triangle in C∗

2 . So any triangle
in C∗

2 is also in L′ and therefore also in CL.
A schematic for the proof is shown in figure 5.

Fig. 5. Schematic showing the geometry used to prove Lemma 4. The
black square is voxel V , the grey square is voxel N1, triangles outside the
rounded square are not in C∗

2 , and triangles in the large circle are in L′.

Theorem 1: Distance queries using the proposed method
do not test more triangles than would be tested using the
Linked Voxel Structure, provided the linked voxel structure
is modified for correctness.

Proof: By Lemmas 3 and 4.
The VCGLib suite [23] provides an implementation of a

third voxelization-based distance query (referred to herein as
the ”VCG voxelization”) that was developed for the Metro
tool [17]. The triangles associated to each voxel are those
triangles whose axis aligned bounding boxes intersect the
voxel. At query time, these triangles have their distances
to the point computed, if any. Cells adjacent to the voxel
containing the query point are processed in order of increas-
ing distance until all cells closer than the minimum distance
found have been checked. The triangles tested will therefore
depend on the location of the query point within the voxel,
making a theoretical comparison with the proposed method
challenging. The numerical results in section VI demonstrate
that the proposed method is much faster in practice, in part
due to avoiding an iterative process at query time.

VI. NUMERICAL COMPARISONS

In addition to the proposed method, the authors imple-
mented the RSS tree based distance query of [4], a BSP
distance query following [2] and [20], and the linked voxel
structure of [2]. Results for the linked voxel structure with
BSP trees created in each non-empty voxel, as described



Fig. 6. Three meshes of varying properties: a ”Coarse Hinge” (1,874
triangles), a ”Fine Hinge” (137,136 triangles), and the ”Happy Buddha”
statue from the Stanford 3D Scanning Repository (67,240 triangles)

in [2], are not included as we found that for the small
numbers of triangles included in each voxel there was no
benefit. Comparisons were also performed with the AABB
tree distance query included in the CGAL library, which uses
a kd-tree of points on the mesh to get an initial upper bound
for the distance to improve pruning performance [12], and
the voxelization approach from the VCG library [23].

Testing was conducted using three meshes of varying
triangle count and feature complexity, shown in figure 6.
The ”Coarse Hinge” represents a CAD model that has been
manually simplified (1,874 triangles), with only a few planes
and cylinders remaining. The ”Fine Hinge” is the same part
without simplification (137,136 triangles), and now includes
detailed helices, fillets, and thin plates. Finally, the statue
from the Stanford 3D Scanning Repository (67,240 triangles)
exhibits roughly uniform triangle size across the mesh. The
axis aligned bounding box of the hinge (which fits the hinge
tightly) is 16.2 cm X 10.2 cm X 12.6cm. The statue’s axis
aligned bounding box is 8.1 cm X 19.8 cm X 8.1 cm.

Timing results are for a single thread on an Intel 11th Gen
Core i7-11800H. The proposed method, RSS Tree, BSP Tree,
and Linked Voxel techniques are implemented in Python
3.8.10 and compiled using numba 0.56.4. Timing for the
linked voxel structure is reported for linking out to ∆(r+3)
not ∆(r + 4) as the performance degrades dramatically
and the accuracy loss is negligible in practice. CGAL uses
version 5.00.2.100 and the official CGAL SWIG bindings
(version 5.5.1). VCGLib results are obtained using version
2022.02, compiled using gcc 9.4.0.

The voxelization techniques require a grid size, which was
set to 1 cm for the coarse and fine hinge and 2 mm for the
statue. Denser grids translate directly to faster query times at
the cost of increased construction cost and memory footprint;
these values were chosen manually to ensure acceptable

performance of all three voxelization methods.
The RSS tree and BSP tree implementations allow spec-

ifying a size for the leaf nodes. These values were chosen
independently for each mesh to achieve good performance.
The RSS tree used 40 triangles/leaf on the coarse hinge, 50
on the fine hinge, and 60 on the statue. The BSP tree used
120 triangles/leaf on the coarse hinge and 240 triangles/leaf
on both the fine hinge and the statue. In contrast, the CGAL
AABB-tree implementation has no user-specified parameters
as it always constructs single triangle leaf nodes. The time
to construct the voxelization or tree is recorded in table I;
the proposed method uses an RSS Tree and 16 thread CPU
parallelism, while linked voxel construction uses an RSStree
and CUDA.

Table II reports the time needed to compute the distance
from the mesh to 1000 points uniformly sampled in 1.5x
the axis aligned bounding box of the input mesh, once
all pre-computed data structures have been created. Timing
comparisons between the voxel and non-voxel methods are
of limited utility as the voxel grid may always be made finer
to achieve faster queries; they are reported here to show that
for reasonable voxel sizes the proposed method outperforms
tree based methods. Note the excellent performance of the
RSS Tree technique on the Fine Hinge, which has widely
varying triangle sizes. Handling this case was a particular
focus of the paper from which it is derived [4].

For fixed grid sizes, as suggested by theorem 1, the
proposed method tests many fewer triangles than the linked
voxel structure. Note that the proposed method runs faster
than the number of triangles tested would suggest; this is
because it has no query time calculations beyond looking up
the triangles to test and doing so. Tree based methods must
traverse the tree at runtime. For the linked voxel structure,
empty voxels require an extra indirection to every linked
voxel and most voxels are empty. The VCGLib approach
must determine at runtime which non-intersecting triangles
need to be tested, but the actual number of triangles tested
is not readily accessible.

A CUDA implementation of the proposed method was
developed using the numba CUDA interface. 32-bit floats
were used throughout the GPU implementation. The imple-
mentation was run on a GeForce RTX 3080 Laptop GPU for
the same three meshes, using the same voxelizations as for
the CPU results in table II. Averaged over ten executions on
1 million query points uniformly sampled in 1.5x the axis
aligned bounding box of the input mesh, the coarse hinge
required 9.66 ms, the fine hinge required 407 ms, and the
statue required 15.7 ms. This includes time to transfer query
points to the GPU and distances back to the CPU. Even for
the fine hinge, the queries/second using the GPU increased
by a factor of 45. For the Coarse Hinge the throughput
increased by 124x, while for the statue the increase was by
a factor of 462.

VII. CONCLUSION

The proposed method is theoretically superior to all three
existing voxelization approaches considered. Numerical ex-



TABLE I
TIME TO CONSTRUCT THE ACCELERATION DATA STRUCTURE FOR EACH

ALGORITHM AND MESH.

Method Coarse Hinge Fine Hinge Buddha
Proposed Method 850 ms 19.2 s 242 s

Linked Voxels 2.81 s 16.6 s 3732 s
VCG Voxels 2.83 ms 89.2 ms 77.1 ms

RSS Tree 37.7 ms 9.49 s 3.3 s
BSP Tree 5.23 ms 990 ms 402 ms

CGAL 13 ms 976 ms 477 ms

TABLE II
REPORTS TIME TO COMPUTE THE DISTANCE FROM 1000 RANDOM

POINTS IN 1.5X THE AXIS ALIGNED BOUNDING BOX OF THE MESH,
AVERAGED OVER 10 EXECUTIONS. IN PARENTHESES ARE THE AVERAGE

NUMBER OF TRIANGLES TESTED PER POINT QUERIED, IF AVAILABLE.

Method Coarse Hinge Fine Hinge Buddha
Proposed Method 1.2 ms (41) 18.3 ms (960) 7.26 ms (275)

Linked Voxels 32.4 ms (355) 1.64 s (23,412) 124 ms (1,596)
VCG Voxels 17.6 ms 36.9 ms 657 ms

RSS Tree 13.6 ms (78) 19.7 ms (116) 35.4 ms (300)
BSP Tree 11.1 ms (229) 92.8 ms (1,717) 223 ms (4,502)

CGAL 19.7 ms 42.6 ms 14.1 ms

periments have demonstrated that this theoretical advantage
holds in practice, achieving between 2 and 100-fold speed-
ups for equal grid size, depending on the mesh. This comes
at the cost of construction complexity; though not a focus
of this work we found that the VCG voxelization could
generally build much faster than the proposed method.

The proposed method would benefit from improvements
to the construction of the voxelization to allow building
denser grids on finer meshes. At a basic level, algorithmic
improvements to reuse information about triangle to voxel
corner distances between neighboring voxels would make a
large difference at the cost of reducing the opportunity for
parallelism. While the voxel-based distance query has been
ported to the GPU, the construction of the grid itself has not
been GPU accelerated. The use of an adaptive grid, like the
octree-based approach in [22], would also be beneficial as it
would mitigate the memory footprint of dense voxelizations
and allow handling query points far from the mesh surface.

REFERENCES

[1] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast dis-
tance queries with rectangular swept sphere volumes,” in Proceed-
ings 2000 ICRA. Millennium Conference. IEEE International Con-
ference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), vol. 4, 2000, pp. 3719–3726 vol.4.

[2] S. Hauth, Y. Murtezaoglu, and L. Linsen, “Extended linked
voxel structure for point-to-mesh distance computation and its
application to nc collision detection,” Computer-Aided Design,
vol. 41, no. 12, pp. 896–906, 2009. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0010448509001754

[3] C. Lauterbach, Q. Mo, and D. Manocha, “gproximity: Hierarchical
gpu-based operations for collision and distance queries,” Computer
Graphics Forum, vol. 29, no. 2, pp. 419–428, 2010.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/
j.1467-8659.2009.01611.x

[4] Y. Li, E. Shellshear, R. Bohlin, and J. S. Carlson, “Construction
of bounding volume hierarchies for triangle meshes with mixed
face sizes,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 9191–9195.

[5] W. Li and P. Song, “A modified icp algorithm based on
dynamic adjustment factor for registration of point cloud and cad
model,” Pattern Recognition Letters, vol. 65, pp. 88–94, 2015.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167865515002287

[6] A. Petit, V. Lippiello, and B. Siciliano, “Real-time tracking of 3d
elastic objects with an rgb-d sensor,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 3914–
3921.

[7] J. Sanchez, A. Segura, and I. Barandiaran, “Fast and accurate mesh
registration applied to in-line dimensional inspection processes,” In-
ternational Journal on Interactive Design and Manufacturing, vol. 12,
pp. 877–887, August 2018.

[8] D. Mejia-Parra, J. Lalinde-Pulido, J. R. Sánchez, O. Ruiz-Salguero,
J. Posada, C. Cae, and U. Eafit, “Perfect spatial hashing for point-
cloud-to-mesh registration.” in CEIG, 2019, pp. 41–50.

[9] C. Sigg, R. Peikert, and M. Gross, “Signed distance transform using
graphics hardware,” in IEEE Visualization, 2003. VIS 2003., 2003, pp.
83–90.

[10] H. Zhao, “A fast sweeping method for eikonal equations,” Mathematics
of computation, vol. 74, no. 250, pp. 603–627, 2005.

[11] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of
sampled functions,” Theory of computing, vol. 8, no. 1, pp. 415–428,
2012.

[12] P. Alliez, S. Tayeb, and C. Wormser, “3D fast intersection and
distance computation,” in CGAL User and Reference Manual,
5.5.1 ed. CGAL Editorial Board, 2022. [Online]. Available:
https://doc.cgal.org/5.5.1/Manual/packages.html#PkgAABBTree

[13] Dawson-Haggerty et al., “trimesh.” [Online]. Available: https:
//trimsh.org/

[14] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver,
“Fast computation of generalized voronoi diagrams using graphics
hardware,” in Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, 1999, pp. 277–286.

[15] Z. Yuan, G. Rong, X. Guo, and W. Wang, “Generalized voronoi dia-
gram computation on gpu,” in 2011 Eighth International Symposium
on Voronoi Diagrams in Science and Engineering. IEEE, 2011, pp.
75–82.

[16] J. Edwards, E. Daniel, V. Pascucci, and C. Bajaj, “Approximating the
generalized voronoi diagram of closely spaced objects,” in Computer
Graphics Forum, vol. 34, no. 2. Wiley Online Library, 2015, pp.
299–309.

[17] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: measuring error
on simplified surfaces,” in Computer graphics forum, vol. 17, no. 2.
Wiley Online Library, 1998, pp. 167–174.

[18] M. Oelsch, M. Karimi, and E. Steinbach, “R-loam: Improving lidar
odometry and mapping with point-to-mesh features of a known 3d
reference object,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 2068–2075, 2021.

[19] M. H. Sattar, “Model aware lidar odometry and mapping (ma-
loam): Improving simultaneous localization and mapping accuracy by
robustly leveraging a building information model,” Master’s thesis,
Technische Universität München, Feb 2022.

[20] M. de Berg, M. van Krevald, M. Overmars, and O. Schwarzkopf, Com-
putational geometry : algorithms and applications, 2nd ed. Berlin:
Springer, 2000.

[21] M. Guthe, P. Borodin, and R. Klein, “Fast and accurate hausdorff
distance calculation between meshes,” The Journal of WSCG, vol. 13,
2005.

[22] B. Drost and S. Ilic, “Almost constant-time 3d nearest-neighbor lookup
using implicit octrees,” Machine Vision and Applications, vol. 29, pp.
299–311, 2 2018.

[23] “The vcg library,” 2023. [Online]. Available: http://vcg.isti.cnr.it/
vcglib/

[24] Y. Kang, M.-H. Kyung, S.-H. Yoon, and M.-S. Kim, “Fast
and robust hausdorff distance computation from triangle mesh
to quad mesh in near-zero cases,” Computer Aided Geometric
Design, vol. 62, pp. 91–103, 2018. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167839618300311

[25] S. Lefebvre and H. Hoppe, “Perfect spatial hashing,” ACM Trans.
Graph., vol. 25, no. 3, p. 579–588, jul 2006. [Online]. Available:
https://doi.org/10.1145/1141911.1141926

[26] C. Ericson, Real-time collision detection. CRC Press, 2004.

https://www.sciencedirect.com/science/article/pii/S0010448509001754
https://www.sciencedirect.com/science/article/pii/S0010448509001754
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01611.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01611.x
https://www.sciencedirect.com/science/article/pii/S0167865515002287
https://www.sciencedirect.com/science/article/pii/S0167865515002287
https://doc.cgal.org/5.5.1/Manual/packages.html#PkgAABBTree
https://trimsh.org/
https://trimsh.org/
http://vcg.isti.cnr.it/vcglib/
http://vcg.isti.cnr.it/vcglib/
https://www.sciencedirect.com/science/article/pii/S0167839618300311
https://www.sciencedirect.com/science/article/pii/S0167839618300311
https://doi.org/10.1145/1141911.1141926

	Introduction
	Related Work
	Preliminaries
	Method
	Comparison of Voxelization Schemes
	Numerical Comparisons
	Conclusion
	References

