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Abstract - This paper presents an undelayed solution

to the bearing-only simultaneous localization and mapping

problem (SLAM). We employ a square-root iterated Kalman

filter for nonlinear state estimation. The proposed technique

incorporates a modified Kalman update that is equivalent to a

variable-step iterative Gauss-Newton method, and is numeri-

cally stable because it maintains a square-root decomposition

of the covariance matrix. Although many existing bearing-

only algorithms focus on proper initialization of landmark

locations, our method allows for arbitrary initialization along

the initial measurement ray without sacrificing map accuracy.

This is desirable because we require only one filter and

the state dimension of that filter need not include numerous

temporary hypotheses. For this reason, the proposed algorithm

is more computationally efficient than other methods. We

demonstrate the feasibility of this approach in simulation and

with experiments on mobile robots.

Keywords - Bearing-only SLAM, Iterated Kalman Filter,

Square root filter

1. INTRODUCTION

Simultaneous localization and mapping (SLAM) has drawn

extensive attention in the past decade (see the recent tutorial

series [1], [2]). In part because of the availability of cost

efficient monocular vision, bearing-only SLAM has received

increased attention recently [3]–[8]. Many of these previous

attempts employ an extended Kalman filter (EKF) framework

and focus on proper initialization of landmark locations af-

ter obtaining several bearing measurements. Some methods

choose to delay until a proper initialization is determined,

which means information about the map is not represented

in the state until initialization occurs [3], [4], [9]. Other

methods require either a bank of filters or an expanded state

dimension to develop an undelayed multi-hypothesis solution

to the problem [5], [6]. An undelayed approach with one filter

that does not expand the size of the state would be preferred.

We approach this goal by using an iterated form of the Kalman

filter that incorporates arbitrary initialization of landmarks and

is numerically stable.

In [10], we have shown the problem of EKF based bearing-

only SLAM. In this paper, we consider the perfect measure-

ment and control example in [10] again to motivate the use of

an iterated estimation technique. Suppose that a mobile robot

moves with perfect odometry and there is a single landmark in
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Fig. 1. An example of perfect measurement and motions. The uncertainty
ellipses are drawn for illustration only (their thickness is supposed to be
arbitrarily small).

the map (see Fig. 1). If the bearing measurements and the robot

motion are perfect, but initially no information is available

for the landmark, then two measurements of bearing at two

distinctive known positions should be enough to localize the

exact location of the landmark. It can be computed that even

under this ideal case, with perfect measurements and motions,

EKF based bearing only SLAM fails to exactly localize the

landmark if its initialized state mean is not the same as the

true location.

When deriving the EKF update rule for the situation of

perfect measurements and perfect robot control (Fig. 1 depicts

the situation), we end up with

x1 = x0 − (x2
0 + 1) arctan(x0) (1)

where x0 is the initialization of the landmark location. Notice

that if x0 6= 0, x1 will not equal zero (the correct location).

The measurement update rule, for the same situation, that

results from the iterated Kalman filter can be expressed as

follows.

xi+1 = xi − (x2
i + 1) arctan(xi) (2)

Note that (1) is just one iteration of (2). Apparently, the

proper method is to iterate the update, which will converge

upon the desired solution. We will show later that the iterated

Kalman filter is an application of the Gauss-Newton method

for approximating a maximum likelihood estimate [11], thus

one should not iterate the Newton update step just once as

EKF does. This is why we adopt the iterated Kalman filter

(IKF) for bearing-only SLAM problem.



Furthermore, IKF with conventional covariance update

equation tends to cause numerical instability more than EKF

because of its double loop feedback structure. The con-

ventional covariance update equation updates the covariance

matrix by subtracting a positive definite matrix from a positive

definite matrix. When the covariance matrix converges, all

the landmarks become correlated through the robot state, thus

becomes singular. It seems that, in this case, the conventional

covariance update generates numerically non-positive definite

matrix which is theoretically impossible. Thus, in this paper,

we propose a square root form of iterated Kalman filter to

improve the numerical stability.

For bearing only SLAM with vision sensors, data associ-

ation is dealt with separately, using vision-based approaches.

Specifically, we intend to use a monocular omni-directional

camera for bearing detection and use SIFT features to asso-

ciate measurements of landmarks as in [12], [13]. Therefore,

throughout this paper, we assume that data association is

solved and focus on the description of bearing-only SLAM us-

ing a modified IKF that employs variable-step Gauss-Newton

optimization in the form of a square root filter using singular

value decomposition.

We briefly review various approaches to bearing-only

SLAM problem in Section 2. We introduce the conventional

IKF and present a modified version of IKF for bearing-only

SLAM as the Gauss-Newton method to nonlinear least square

problem in Section 4. In Section 5, a numerically stable square

root IKF algorithm is presented. In Section 6, we evaluate

the proposed algorithm with simulations and present off-line

results based on data from our own experiments. We close

with a discussion in Section 7.

2. RELATED WORK

Bearing-only SLAM is attractive, in part, because of the

technical availability of low cost monocular vision. This is

also an inherently more difficult problem than range-bearing

SLAM because a bearing sensor does not provide sufficient

information to estimate the full state of landmarks from

a single observation. Bearing-only SLAM requires multiple

observations from multiple poses, which exacerbates the typi-

cal SLAM challenge, inter-dependence between mapping and

localization.

Delayed initialization of the landmark location is a popular

method in bearing only SLAM. A batch update with all of the

stored observations is demonstrated in [9]. In [3], initialization

is postponed until a pair of measurements are distinguish-

able enough and the probability density of the corresponding

landmark becomes sufficiently Gaussian. Once initialized, a

single batch update is performed to refine and correct the map

using remaining accumulated measurements. In [4], the per-

sistence of landmark pose estimation is tracked without prior

knowledge of data association. To incorporate the positioning

and sensing uncertainties, the authors project measurements

from the sensor space to the plane by approximating Gaussian

distributions with bivariate ellipse representations.

Another popular method related to the extended Kalman

filter (EKF) is the Gaussian sum filter (GSF). The GSF approx-

imates arbitrary probability density functions by a weighted

combination of many multivariate Gaussians. Since the GSF,

which is introduced in [14], [15], requires retaining a large

set of EKFs, its computational complexity is not desirable to

SLAM problems, especially when a large number of land-

marks are initialized simultaneously (typical for vision-based

methods). In [5], a Sequential Probability Ratio Test (SPRT)

is employed to reduce the number of members in the Gaussian

sum by pruning highly improbable hypothesis, but this method

still relies on a large number of filters during initialization.

An approximated Gaussian sum method is proposed in [6]

where a GSF is approximated by a set of parametrized

cascaded Gaussian distributions and a single covariance matrix

for all the Gaussians is managed and updated by Federated

Information Sharing (FIS) which processes the information in

a decentralized way. Even in this approximated form, a much

larger state will be required.

Particle Filters (PFs), which incorporate non-Gaussian dis-

tributions, are widely used in SLAM research. In [7], particle

filters are adopted for bearing measurements by associating

hypothesized pseudo-ranges with each bearing measurement

and by implementing a re-sampling procedure to eliminate

improbable particles. In [16], a set of particles are maintained

along the viewing ray of a landmark and landmark initializa-

tion is delayed until the range distribution is roughly Gaussian.

In [17], a FastSLAM particle filter is used for single-camera

SLAM with a partial initialization strategy which estimates

the inverse depth of new landmarks rather than their depth for

adding new landmarks to the map. In [8], authors compare the

efficiency and robustness of EKFs, GSFs, and PFs for bearing-

only SLAM. They implement a modified FastSLAM where

the EKFs of the original FastSLAM in [18] are replaced by

GSFs. Particle filter methods often require a very large number

of particles for these bearing-only methods to work properly,

making the technique computationally difficult.

3. REVIEW OF THE ITERATED KALMAN FILTER

The iterated Kalman filter (IKF) is an extension of the

extended Kalman filter (EKF), a common tool for nonlinear

state estimation. The primary difference between the two

variants is that the state estimation of the IKF is repeatedly

updated until it converges between measurement intervals.

Thus, IKF has a double feedback loop structure for the whole

process as oppose to a single loop for EKF. In this section, we

briefly review the IKF as a Gauss-Newton method [11] and

begin to develop motivation for using an iterated algorithm to

solve the nonlinear problem of bearing-only SLAM.

Ideally, when we perform the Kalman filter update step, we

would like to replace the state mean x̂+

k+1
with the maximum

likelihood state estimate given the current measurement zk+1

and the predicted state estimate x̂−

k+1
, P−

k+1
.

x̂+

k+1
= arg max

x
prob(x | zk+1, x̂

−

k+1
, P−

k+1
) (3)



The solution to (3) is the minimization of the following

nonlinear least-squares cost function:

c(x) =

[

zk+1 − h(x)
x − x̂−

k+1

]T[
R 0
0 P−

k+1

]

−1[

zk+1 − h(x)
x − x̂−

k+1

]

(4)

where h(x) is the measurement model and R is the observation

covariance matrix.

For a system with a linear measurement model, a direct

solution is obtained via the traditional Kalman update equa-

tion, but for a system with a nonlinear measurement model,

such as the bearing-only SLAM problem presented here, we

must turn to numerical optimization methods. The Gauss-

Newton algorithm iteratively solves the nonlinear least-squares

minimization problem with the following recursive equation.

xi+1 = xi − γi(∇2c(xi))
−1∇c(xi) (5)

where γi is a parameter to vary the step-size. For traditional

derivations of the IKF, γi = 1.

By substituting the appropriate Jacobian ∇c(x) into (5)

along with the Hessian ∇2c(xi), we arrive at the following

update rule for the iterated Kalman filter, where H is the

Jacobian of the measurement function h(x). We refer the

reader to [11] for details of this derivation.

x0 = x̂−

k+1
, P0 = P−

k+1

Ki = P0H
T
i (HiP0H

T
i + R)−1

Pi+1 = (I − KiHi)P0 (6)

xi+1 = xi + γi(H
T
i R−1Hi + P−1

0 )−1

·(HT
i R−1(z − h(xi)) + P−1

0 (x0 − xi)) (7)

= x0 + Ki(zk+1 − h(xi) − Hi(x0 − xi)) (8)

In the equations above, the subscript k refers to the time-

index and the subscript i refers to the iteration index. For a

single update step at time k there may be many iterations of

i before the state xi converges. Once the IKF does converge,

the estimate is overwritten with the result, x̂+

k+1
= xi and

P+

k+1
= Pi. In order to obtain the conventional IKF update

equation (8), the variable-step parameter γi in (7) must equal

one.

It is important to recognize that the EKF update rule is

equivalent to performing just one iteration of the Gauss-

Newton algorithm: taking (8) and setting i = 0 produces the

well known EKF update equations below.

K0 = P0H
T
0 (H0P0H

T
0 + R)−1

x̂+

k+1
= x1 = x0 + K0(zk+1 − h(x0))

P+

k+1
= P1 = (I − K0H0)P0, (9)

There are two points we would like to emphasize by formu-

lating the IKF this way. The first is that an iterative numerical

optimization method is required to compute the maximum

likelihood estimate when the given application has a nonlinear

measurement model. The second point is that the extended

Kalman filter is just one step of this minimization process. To

begin a numerical descent method and then stop only part way

is often naive and in most cases will not provide the minimum

of the objective function. Many applications do not suffer

from this approximation. For example, range-bearing SLAM

solutions have been successful and reliable when formulated

as an EKF because the range and the bearing measurements

provide fairly good estimations of the landmark locations.

Unfortunately this is not the case for bearing-only SLAM,

for which iteration is crucial. We later justify this claim by

revisiting the analytical example introduced in Section 1.

4. BEARING-ONLY SLAM USING AN ITERATED

KALMAN FILTER

We will now formulate the IKF based bearing-only SLAM

solution and focus on modifications that are specific to this

application. The state will be defined as the robot pose

[xR, yR, θR] appended by the locations of all N observed

landmarks.

xk = [xR, yR, θR, xL1
, yL1

, xL2
, yL2

, ..., xLN
, yLN

]T

For simulations and experiments, we will assume a unicycle-

model for the mobile robot. The motion input uk = [vk, ωk]T

contains the linear and rotational velocities of the robot at the

corresponding time-step k and the state evolves according to

the process model f(xk, uk).

f(xk, uk) = xk +

[

I3x3

02Nx3

]





vk cos θk∆t
vk sin θk∆t

ωk∆t



 (10)

Fk =
∂f

∂xk

=

[

I3x3

02Nx3

]





1 0 −vk sin θk∆t
0 1 vk cos θk∆t
0 0 1



 (11)

Wk =
∂f

∂uk

=

[

I3x3

02Nx3

]





cos θk∆t 0
sin θk∆t 0

0 ∆t



 (12)

The prediction step for our iterated method is equivalent to that

which is used for standard implementations of EKF SLAM.

The equations used in the prediction step are shown below.

x̂−

k+1
= f(x̂+

k , uk)

P−

k+1
= FkP+

k FT
k + WkUWT

k

where x̂+

k and P+

k are the state mean and covariance matrix

from the previous time step, U is the covariance matrix for the

motion input, and Fk and Wk are the Jacobians of the process

model f(xk, uk).
The nonlinear measurement model for an observation of the

i-th landmark is

hi(xk) = arctan

(

yR − yLi

xR − xLi

)

− θR.

When performing the update step, all bearing measurements

(obtained during the current time step) are appended to form a

column vector zk. The expected measurement ẑk is computed

by appending each appropriate hi(xk) as a column vector

of equal size. The Jacobian of the expected measurement is

represented by H and is always computed from the current



state estimate. Also, we assume that each measurement has

been disrupted by white Gaussian noise with covariance R.

The update step is performed iteratively according to (7) until

convergence.

4.1. Landmark Initialization

It is well known that the location of a new landmark cannot

be estimated by a single bearing measurement. For this reason,

accurate landmark initialization has been a common focus of

previous work on bearing-only SLAM. Many solutions either

implement a multiple hypothesis filter [5], [6], [14], [15] or

delay until more information has been obtained [3], [4]. We

choose to simplify this task by performing a naive undelayed

initialization of the landmark. A ray is cast from the robot that

represents all locations that agree with the initial observation.

Because all points that lie on this ray have equal likelihood

given the measurement, we can initialize the landmark mean

arbitrarily on this ray according to (13). The state covariance

matrix is also modified by appending a large uncertainty α for

each dimension of the new landmark.

x̂k =









x̂k

xR+rI cos
(

θ̂R + zI

)

yR+rI sin
(

θ̂R + zI

)









, Pk =





Pk 0

0
α 0
0 α



 (13)

There are two design parameters for this method, rI and α.

α is the variance that is used to define the prior distribution

of the landmark location. This value should be very large

because the actual distribution is uniform. The parameter rI

is essentially a “range guess” and, if desired, could be chosen

arbitrarily although large values of rI experimentally produce

better results (see Fig. 3). The sensitivity of the filter to the

parameter rI will be discussed in Section 6.

After initialization, a standard EKF update is performed.

It is not necessary to iterate on this update. Only when

previously initialized landmarks are observed again will it

become necessary to perform an iterated update.

4.2. A Variable-Step IKF

In the previous section, we briefly reviewed the IKF as a

full-step Gauss-Newton method that minimizes a nonlinear

quadratic cost function. Introducing the step-size γi in the

Gauss-Newton method (5) is required for bearing only SLAM

because, in general, the Gauss-Newton method does not con-

verge everywhere. What is guaranteed by (5) when γi = 1 is

that the objective cost function begins to decrease as we start to

move in the Newton direction. By taking the full Newton step

( γi = 1), however, we may move too far for the approximated

equation to be valid. Therefore, the cost does not necessarily

decrease.

We choose to use a backtracking line search, which is one

of many techniques that can be found in [19], [20]. Because

our goal is minimizing the objective cost function (4) as we

iterate, we compute the value of the cost at each step and

check its decrease. The idea of backtracking is to ensure the

average rate of decrease of the cost to be at least some fraction

α of the initial rate of decease in the gradient direction. We

note that we can always decrease the objective cost function

by moving a very small step along the Newton direction.

Using a variable step-size approach prevents us from using

the conventional IKF update equation (8). Therefore, we revert

back to (7) and perform all updates in a form that more closely

resembles the Gauss-Newton recursive step.

Iterating the update step is more costly than performing the

update step once (EKF). We claim that the added computation

is manageable because the number of iterations required to

reach convergence is usually minimal. This can be attributed

to the quadratic convergence of Newton’s method. Also, after

the landmark estimates have converged, the number of required

iterations significantly decreases (see Fig. 4). We analyze the

increase in computation experimentally in Section 6.

4.3. An Analytical Example

We now revisit the analytical example which is presented

in the introduction and depicted in Fig. 1 to see how the

IKF behaves for an estimation problem with bearing-only

measurements.

By design, the IKF update equation for this specific example

can be simplified directly from (7). The resulting iterative

update expression is

xi+1 = xi − γi(x
2
i + 1) arctan(xi) (14)

where x0, as stated before, is the x-coordinate of the landmark

when it is initialized.

When γi = 1 and x0 is sufficiently small, the IKF converges

upon the exact landmark location (xi, 0) = (0, 0) as iteration

proceeds, which is obviously the only equilibrium. This is

exactly what we hoped for. It is easy to see in this case,

however, that there is a region of attraction; if γi = 1 and

x0 is sufficiently large, arctan(xi) becomes near constant, the

square term −x2
i dominates in the right hand side of (14), and

thus the equilibrium of the iteration process becomes unstable.

Because the IKF is equivalent to a Gauss-Newton method,

we can take a smaller step in the Newton direction to reduce

the objective cost by selecting γi less than one. To guarantee

the convergence of the iteration, we choose the step-size γi

using backtracking method. Note that there always exists such

a finite step 0 < γi ≤ 1 in the Newton direction that guarantees

a reduction of the cost function as long as the Hessian is

positive definite in (5).

Using an EKF update for this example, as reported in Sec-

tion 1, produces the following final estimate for the landmark

location x1 = x0 − (x2
0 + 1) arctan(x0). It can be seen that

unless the initialization is perfect, this method will not produce

the desired result. This example shows the importance of using

an IKF instead of an EKF for bearing-only problems and also

demonstrates the need for step-size control.

5. SQUARE ROOT IKF

Unlike EKF SLAM, our variable step IKF algorithm, due

to recursive iterations, creates an inner feedback loop between

measurement intervals. The stability of this inner feedback



loop is guaranteed by the positive definiteness of the covari-

ance matrix which is updated in the loop itself. The covariance

matrix may become numerically non-positive definite (which

is theoretically impossible) because of the numerically im-

proper covariance update equation in the conventional IKF;

the covariance matrix is updated by subtracting a positive

definite matrix from the positive definite covariance in (6). We

have seen in numerous simulations that it is indeed the case

that the covariance matrix, when using the IKF for bearing-

only SLAM, becomes non-positive definite due to numerical

inaccuracies. The effect is divergence of previously converged

landmark locations, resulting in a inaccurate map.

Thus, it is important for the iterated Kalman filter to have

a more dependable covariance update rule. In this paper, an

update rule based on singular value decomposition [21] is

adapted to this application. To maintain the positive definite

covariance matrix throughout the process, the covariance P+

k

is maintained in the form of a singular value decomposition.

Suppose that P+

k is given as PV kPD
2
kPV

T
k . In the prediction

step, a square root of the covariance matrix is obtained as

follows:

P−

k+1
= FkP+

k FT
k + WkRWT

k

= Fk(PV kPD
2
kPV

T
k )FT

k + WkRWT
k

=

[

PDkPV
T
k FT

k√
R

T
WT

k

]T [

PDkPV
T
k FT

k√
R

T
WT

k

]

A singular value decomposition is performed for the square

root of P−

k+1
,

SVD

(

√

P−

k+1

)

= SVD

([

PDkPV
T
k FT

k√
R

T
WT

k

])

= PU

[

PD

0

]

PT
V

(15)

where PU and PV are orthonormal matrices and PD is a

diagonal matrix. Thus,

P−

k+1
= PT

V

[

PT
D 0

]

PT
U PU

[

PD

0

]

PT
V = PV P 2

DPT
V (16)

Now in the iteration loop, the state estimate is updated by

a variable step Gauss-Newton method using (7) as follows:

xi+1 = xi + γi (HT
i R−1Hi + PV P−2

D PT
V )−1

(HT
i R−1r + PV P−2

D PT
V xd) (17)

where r = z − h(xi), xd = x0 − xi, and x0 = x̂−

k+1
. Here,

we have that

∆x = xi+1 − xi, (18)

∇c = HT
i R−1r + PV P−2

D PT
V xd (19)

After the iterations are complete (let’s say at i = N ), the

measurement Jacobian HN for the final iterated state xN is

obtained, then the covariance matrix P+

k+1
is finally updated

using (6) as follows:

P+

k+1
= P−

k+1
−P−

k+1
HT

N (HNP−

k+1
HT

N +R)−1HNP−

k (20)

= ((P−

k+1
)−1 + HT

NR−1HN )−1 (21)

= (PV PD
−2PV

T + HT
NR−1HN )−1

= PV

(

PD
−2 + PT

V HT
NR−1HNPV

)

−1
PT

V (22)

= PV

(

TT T
)

−1
PT

V

= (PV P ∗

V ) P ∗

D
2 (PV P ∗

V )
T

= PV k+1PD
2
k+1PV

T
k+1 (23)

where T =

[ √
R−1HNPV

P−1

D

]

and P ∗

U

[

P ∗

D

0

]

P ∗

V
T is the

singular value decomposition of T . Thus, the final update is,

PV k+1 = PV P ∗

V , PDk+1 = P ∗

D.

Note that we choose the covariance update rule (21) which

further becomes (22) over the numerically improper (20)

to maintain the positive definiteness of the covariance. Its

numerical positive definiteness is guaranteed by the term in

middle of the quadratic equation, which is a sum of two

positive definite matrices. Also, note that the covariance matrix

is maintained in the singular value decomposition form.

To check the convergence of the iteration, we instead

compute the cost function as,

c = xT
d PV P−2

D PT
V xd + rT R−1r (24)

Again, if the cost is not reduced after the iteration, the step-

size variable γi is modified.

The algorithm for the proposed method, which summarizes

the entire process, is shown in Algorithm 1.

6. EVALUATION

In this section we discuss a simulation of a mobile robot

that can create a map of a number of landmarks in a planar

2D world with bearing measurements. For each trial, the robot

performs the proposed iterated bearing-only SLAM solution.

The simulation is meaningful because it demonstrates how

map accuracy is independent of the landmark initialization

range. In addition, we discuss an experiment using a real robot

with omnidirectional vision as well as an off-line experiment

using our own experimental data.

6.1. Simulation Results

In our simulator, the mobile robot follows a unicycle model

that has three degrees of freedom (the x − y location of

the vehicle and the vehicle heading). Two motion inputs

(the translational velocity and rotational velocity) are used

to evolve the state according to the process model. White

Gaussian noise is added to each of the motion inputs but is

hidden from the estimator for obvious reasons. In all cases,

the only measurements used to update the Kalman filter are

bearing measurements to landmarks, which are relative to the

orientation of the robot and also include added white Gaussian

noise. Table I shows the parameters that we used for each of

the simulations.



Algorithm 1 Square root IKF

Require: P0 > 0, R > 0, α
PU0

P 2
D0

PV0
= SV D(P0)

loop

/∗ Prediction ∗/
Update x0 = x̂−

k+1
, F,W,P−

k+1
from (10), (11), (12), (15,

16)

/∗ Measurement update∗/
Initialize all seen landmarks, x1 and P1 from (13)

while i < maximum iteration and not converged do

/∗ IKF update ∗/
xs = xi

xd = x0 − xi

Update H, r = z − h(xi), i
Compute the cost, cbefore from (24)

Update State from (17) and compute ∆x from (18)

Update H, r = z − h(xi)
Compute its gradient ∇c from (19)

Compute the cost, cafter from (24)

if cbefore + γ∇cT ∆x < cafter then

t = βt
γ = αt (choose 0 < α < 0.5)

xi = xs

else

t = 1, γ = 1
if ‖xi − xs‖ < ǫ then

converged = true

end if

end if

end while

Update P+

k+1
from (23)

end loop

TABLE I

SIMULATION PARAMETERS

Measurement variance σ2
z 7.6x10−5 rad2

Velocity variance σ2
v 10−4 m2/s2

Rotation variance σ2

φ
10−5 rad2/s2

Initialization variance α 1010 m2

Robot velocity v 2.0 m/s
Robot rotational velocity ω 0.314 rad/s

For the following discussion we will refer to the simulation

result shown in Fig 2. The robot observes landmarks in the

environment while performing a predefined circular trajectory.

As stated before, only one measurement does not provide the

information needed to initialize an estimate of the range to the

observed landmark. Therefore, the algorithm must initialize

each landmark with a predetermined range “guess”. This can

be chosen arbitrarily or may be chosen as a function of the

sensor range. For this specific simulation shown in Fig. 2,

the landmarks were all initialized at a distance of 5m when

they were first observed. The uncertainty ellipses in Fig. 2

show that, as time elapses, the landmark estimates converge

to the correct locations without divergence. With the same
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Fig. 2. This is a snapshot of a simulation: a mobile robot performs a circular
trajectory while observing landmarks. The IKF is updated with bearing
measurements and properly converges to the correct landmark locations.
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Fig. 3. This plot shows the map accuracy, over many trials, for the simulator
in Fig. 2 versus the range value that was used when initializing each landmark.

parameters, a simple EKF solution fails (diverges).

We ran the same simulation again for many trials while

varying the initialization range “guess” to test the sensitivity

of the filter to this parameter. The accuracy of the map

that is produced for each initialization scenario is plotted in

Fig. 3. The graph is relatively flat as shown in Fig. 3, which

demonstrates how the map accuracy is, for the most part,

almost independent of landmark initialization. On the other

hand, we note that, choosing an initialization distance that

is too small may negatively impact the performance of the

estimator. We attribute this to overconfidence in the landmark

locations due to linearization.

The number of iterations is small enough as shown in Fig. 4,

especially after the state estimation value converges. In this

figure, the number of iterations include the backtracking steps.

The real cost of the iteration steps comes from computing

the inverse of the covariance matrix which is outside of the

backtracking loop. We claim that the proposed IKF is not

computationally exhaustive.

6.2. Indoor Experiment with Visual Features

An omnidirectional camera is used with our experimental

platform for obtaining bearing measurements to landmarks in
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Fig. 4. The number of iterations per update significantly decreases as the
state estimation converges.

Fig. 5. A snap shot of the omnidirectional camera used to obtain bearing
measurements to visual features in the environment.

the environment. The Scale Invariant Feature Transform, SIFT

(see [22] for detail) is used for detecting natural landmarks

such as doorways in an indoor environment. Fig. 5 shows a

captured image where SIFT features at doorways are detected

as landmarks and corresponding bearing measurements are

inferred. Data association can be solved using the visual

information available in the SIFT descriptor corresponding

to the observed landmark. Fig. 6 shows a result obtained

from the proposed bearing-only SLAM method with error

ellipses overlapped with a ground truth floor plan. The map

is accurate and demonstrates algorithm success for a typical

indoor experiment.

7. CONCLUSION

We have presented bearing only SLAM using a square root

iterated Kalman filter. By presenting the IKF as a Gauss-

Newton optimization method, we were able to motivate the use

of iteration in solving a nonlinear estimation problem. Careful

study of an analytical example of bearing-only SLAM proved

that iteration was especially important for this type of esti-

mation problem. Several modifications were required, though,

such as a reformulation of the update step as a square root filter

to avoid numerical instability, and the alteration of the Gauss-

Newton algorithm to incorporate a variable-step gain factor.

The effectiveness of this approach was demonstrated with

multiple experiments. Despite a naive approach to initialization

Fig. 6. The robot was configured to recognize doorway SIFT features. This
figure displays, by means of comparison to a floorplan, the success of the
IKF when estimating the doorway landmarks.

(which allows for a true undelayed algorithm), the filter

properly converges upon landmark locations when creating a

map. Our proposed solution takes the focus off of initialization

when approaching bearing-only SLAM and makes up for the

initial innaccuracy by using improved estimation techniques.
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