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Abstract— This paper presents a deep-learning model for
deformable registration of ultrasound images at online rates,
which we call U-RAFT. As its name suggests, U-RAFT is
based on RAFT, a convolutional neural network for esti-
mating optical flow. U-RAFT, however, can be trained in an
unsupervised manner and can generate synthetic images for
training vessel segmentation models. We propose and compare
the registration quality of different loss functions for training
U-RAFT. We also show how our approach, together with a
robot performing force-controlled scans, can be used to generate
synthetic deformed images to significantly expand the size of a
femoral vessel segmentation training dataset without the need
for additional manual labeling. We validate our approach on
both a silicone human tissue phantom as well as on in-vivo
porcine images. We show that U-RAFT generates synthetic
ultrasound images with 98% and 81% structural similarity
index measure (SSIM) to the real ultrasound images for the
phantom and porcine datasets, respectively. We also demon-
strate that synthetic deformed images from U-RAFT can be
used as a data augmentation technique for vessel segmentation
models to improve intersection-over-union (IoU) segmentation
performance.

I. INTRODUCTION

Vascular access and subsequent placement of central ve-
nous and arterial catheters is an essential first step for deliv-
ering life-saving medical care to trauma patients, e.g. admin-
istering anesthesia, monitoring vitals, and delivering rescus-
citative treatments like Resuscitative Endovascular Balloon
Occlusion of the Aorta (REBOA). Accessing a blood vessel,
commonly done via the Seldinger technique [1], requires
insertion of a needle into the center of the vessel, which is
typically done by a highly skilled clinician using ultrasound
to determine where to insert the needle.

The work in this paper is motivated by the potential
benefits of supporting human-guided vascular access with a
robot so as to enable personnel away from centers of medical
excellence to gain vascular access while avoiding vessel wall
damage and hematomas caused by failed needle insertion
attempts. This would be especially impactful on battlefields
and in mass casualty disasters where there is limited access to
trained medical personnel and hospital facilities. Examples
of recent work towards the goal of robot-assisted femoral
vessel access under ultrasound guidance include a hand-held
device [2] and our group’s system using a robot manipulator
[3].

Ultrasound imaging is an important modality for vascular
access because it is safe, portable, and low-cost. However, the
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Fig. 1. (a) The robot arm we used for capturing the ultrasound images
with force-controlled scanning, together with a human tissue and vasculature
phantom model we used to test U-RAFT. (b) Our U-RAFT model registers
a deformed image to a reference image with RAFT, creating deformation
field that is then used with a spatial transformer network (STN) to generate
new deformed images, shown here with example in-vivo porcine images.

ultrasound probe needs to press against the skin to maintain
acoustic coupling contact while capturing images, causing
anatomical deformations during the scan. These deformations
present a challenge for training deep neural networks that
segment vessels from the ultrasound images.

Convolutional neural networks (CNNs), U-Net [4], and
variants of U-Net [5] are commonly used in medical image
segmentation, including vessel segmentation in ultrasound
[2], [6]–[8]. Training these models requires time-consuming
labeling of the vessel contours in each image by person-
nel trained to interpret ultrasound images. Furthermore, the
training set includes only a small subset of deformed vessel
shapes that could occur, limiting the ability of the model
to generalize to probe forces and deformed vessel shapes
outside the training dataset. Although nonlinear warping
augmentations could be applied to images [4], this technique
is not guaranteed to generate physically realistic image
augmentations.

In this paper, we propose an approach to use deformable
registration for augmenting images for training vessel seg-
mentation models with small training datasets. Deformable
registration is the problem of how to register pairs of images,
one referred to as the reference image and the other as the
deformed image, where the two images are of the same
anatomy, but exhibit different deformations. By registering
images captured at different forces, we will show that we can
generate synthetic images at intermediate forces, ensuring
that the augmented images are physically realistic. A similar



idea was used in [9], [10] for brain MRI images, and in [11]
with lung MRI images.

Previous approaches to deformable registration include
hand-crafted, iterative nonlinear optimization methods with
a variety of cost function definitions and parameterizations
of deformations [12]–[14]. These methods, however, typi-
cally have non-convex cost functions and are slow due to
the large number of optimization parameters. To overcome
these difficulties, deep-learning methods have also been
presented [15]–[17], but work on deep-learning methods for
ultrasound-to-ultrasound registration is limited. Compared
to other higher-quality imaging modalities studied in most
deformable registration work (e.g. CT-to-MRI or CT-to-
ultrasound), ultrasound-to-ultrasound deformable registration
is uniquely challenging due to noise, speckle, shadows, and
mirror image artifacts [12]. Despite this, we will show that
this problem is amenable to a deep-learning approach using
our proposed model.

In this paper, we present a deep-learning model called U-
RAFT (Unsupervised Recurrent All-pairs Field Transforms)
for ultrasound-to-ultrasound deformable image registration
and synthetic ultrasound image generation. As shown in
Fig. 1b, U-RAFT uses RAFT [18], a CNN for optical flow
estimation, to register images and create a deformation field
(DF). It then uses a Spatial Transformer Network (STN)
[19] to generate new synthetic images. This approach allows
for unsupervised training of U-RAFT, which we use to
apply RAFT to ultrasound images for the first time, as
well as generate realistic deformations for expanding vessel
segmentation training datasets.

Compared to prior work, our work is unique in that it
tackles ultrasound-to-ultrasound deformable registration in
images of vasculature, we are able to register images at
a rate suitable for online use (∼ 33 Hz), and our training
is unsupervised. We note that the utility of our deformable
registration approach is not limited to vessel segmentation,
since deformable registration in ultrasound images is broadly
important for longitudinal studies/diagnosis, population stud-
ies, and intra-operative registration to anatomy [12], [17].

In Section II, we present the network architecture of U-
RAFT and describe three loss functions we considered for
training this network in an unsupervised manner. In Section
III, we present experimental results using U-RAFT on a
benchtop silicone phantom model as well as in-vivo porcine
images of femoral arteries and veins. We compare the reg-
istration quality among the three loss functions we defined,
and we demonstrate how the synthetic images that U-RAFT
generates can be used as a data augmentation technique to
improve the performance of a CNN for vessel segmentation.
Section IV presents our conclusions and discussion on future
directions.

II. APPROACH

This section discusses the network architecture used for
predicting the deformation field (DF) and the loss function
used to train this network in an unsupervised manner. Fur-
thermore, we discuss the use of the DF to generate new

synthetic ultrasound images and their use to improve vessel
segmentation.

A. U-RAFT network architecture

Let Ir and Id be the reference and deformed ultrasound
images, respectively, collected at forces Fr ∈ R and Fd ∈ R.
We denote a DF as udr = gθ(Id, Ir), where gθ is the function
we seek to model with our network and the subscript θ
denotes the network parameters used. Here, we use the state-
of-art RAFT network [18] to model gθ(Id, Ir). We chose
RAFT over other CNN-based networks like FlowNet [20],
FlowNet2 [21], and PWC-Net [22] because of its superior
performance on the Sintel [23] and KITTI [24] datasets.

RAFT has been shown to outperform other optical flow
methods in the RGB domain [20]–[22], but no prior work
has shown the application of RAFT on medical ultrasound
images, which are inherently noisier than RGB images [12].
RAFT is also a supervised method that needs a ground truth
displacement field for training. Acquiring ground truth for
ultrasound images is time-consuming and labor-intensive, so
we seek to make the training unsupervised. We do this by
passing the output of RAFT through a Spatial Transformer
Network (STN) [19] to generate a reconstructed deformed
image I ′d = STN(udr, Ir). This enables us to incorporate
the similarity of I ′d and Id in our training loss function,
which, as we will show below, provides improved registration
performance. We refer to the RAFT architecture together
with STN as U-RAFT.

B. Loss functions for unsupervised training

We now define three different choices of loss functions to
train the U-RAFT network in an unsupervised manner. We
discuss the formulation and the advantages/disadvantages of
each and perform a quantitative comparison between them
in Sec. III-B.

The first loss function we consider, denoted as Lus,
consists of two parts Lssim, a multi-scale structural similarity
(SSIM) loss that penalizes the differences in appearance
between Id and I ′d, and Lsmooth, which penalizes abrupt
changes in the neighboring pixels of I ′d (generated from udr):

Lus(Id, I
′
d, udr) = βLssim(Id, I

′
d)+(1−β)Lsmooth (udr) (1)

where β ∈ R is a parameter to adjust the relative weight of
Lssim and Lsmooth. Lssim and Lsmooth are given by:

Lssim(Id, I
′
d) = 1− SSIM(Id, I

′
d)

Lsmooth(udr) = meanxy

(
∇2udr(x, y)

∇x2
+

∇2udr(x, y)

∇y2

)
(2)

where x, y are the pixel location of a 2D-deformation field,
and meanxy denotes the mean over all pixels.

The second loss function we consider is a cyclic version of
(1), denoted as as Lus-cyclic. In this loss function, we register
the reference image Ir to the reconstructed deformed image
I ′d to generate a new reconstructed reference image I ′r =
STN(gθ(Ir, I

′
d), I

′
d), as shown in Fig. 2. We then add to the



Fig. 2. Pipeline used to generate image reconstructions for training U-RAFT in an unsupervised manner. Our proposed cyclic loss function in (3) improves
registration quality by comparing the reconstructed reference image to the original reference image.

loss function in (1) an additional term that calculates Lus for
Ir, I ′r, and urd′ .

Lus-cyclic = Lus(Id, I
′
d, udr) + Lus(Ir, I

′
r, urd′) (3)

Finally, the third loss function we consider is designed to
improve flow prediction in the vicinity of important anatom-
ical features like veins, arteries, etc. We denote this feature-
aware, cyclic, multi-scale SSIM loss function as Lfa-cyclic-us.
We use the scale-invariant feature transform (SIFT) algorithm
[25], as implemented in OpenCV, to extract keypoints in an
ultrasound image and construct a binary feature map around
those keypoints. We then multiply each image by its binary
feature map to create Ĩd, Ĩ ′d, Ĩr, Ĩ ′r for the deformed, re-
constructed deformed, reference, and reconstructed reference
images, respectively. We then calculate the loss using the
cyclic loss in (3) but with the images with features extracted:

Lfa-cyclic-us = Lus(Ĩd, Ĩ
′
d, udr) + Lus(Ĩr, Ĩ

′
r, urd′) (4)

C. Experimental setup and training details

To train U-RAFT, we have collected ultrasound images
from two different subjects: a human tissue/vasculature gel
phantom model (CAE Blue Phantom), which we refer to
as the blue-gel dataset and two different live pigs, which
we refer to as the live-pig dataset. The IACUC-approved
in-vivo porcine experiments were done in a controlled lab
setting under the supervision of clinicians. The data was
collected using a robotic ultrasound system which includes a
UR3e manipulator (Universal Robots) with a Fukuda Denshi
portable point-of-care ultrasound scanner (POCUS) using a
5-12 MHz 2D linear transducer and a six-axis force/torque
sensor (ATI) mounted on the end effector, as shown in Fig.
1. The datasets were collected either in a “scanning mode”,
where the robot scanned between two pre-defined points
on the surface of the subject with a hybrid force motion
controller similar to the controller described in [26], or in
“palpation mode”, where the robot was commanded with a
sinusoidal force profile at a single point on the skin surface.
The minimum and maximum force used for both the modes
were 2N and 10N, respectively.

Using the loss functions introduced in Section II-B, we
train the U-RAFT network separately for the blue-gel and
live-pig datasets. For all these datasets, the RAFT weights
were initialized with pre-trained KITTI weights [24] and
were trained for 150 additional epochs. The implementation
is highly parallelized and performs full-batch gradient de-
scent using the Stochastic Gradient Descent [27] optimizer
in the Pytorch Autograd library [28], with a batch size of 12
with a learning rate of 0.0001.

D. Synthetic data generation

Now that we can use U-RAFT to predict the DF between
deformed and reference ultrasound images, we can generate
synthetic ultrasound images at additional probe force values.
Suppose ultrasound images at two different force values
Fr and Fd are IFr and IFd

. We use U-RAFT to find the
DFs uFr,Fd

= gθ(IFr , IFr ) and uFd,Fr = gθ(IFd
, IFr ).

Then we use linear interpolation to find the intermediate DF
uFnew,Fr

= αuFr,Fr
+(1−α)uFd,Fr

for an intermediate force
Fnew, where α = (Fnew − Fmin)/(Fmax − Fmin), with Fmin
and Fmax being the minimum and maximum forces between
which we interpolate. We then pass uFnew,Fr through STN to
generate IFnew = STN(uFnew,F1 , IF1). We then use synthetic
images to augment the vessel segmentation dataset. We will
show in Section III-B that this data augmentation technique
helps a U-Net vessel segmentation model generalize to
different forces.

III. ANALYSIS AND RESULTS

A. Deformable registration results with U-RAFT

In this section, we evaluate U-RAFT’s performance on
registering ultrasound images from the blue-gel and live-pig
datasets using the three loss functions described in Section
II-B. We use the image similarity between the original
deformed image Id and the reconstructed deformed image
I ′d to measure the efficacy of our method. Figure 3 shows an
example of reference and deformed images from the blue-
gel and the live-pig datasets along with the reconstructed
reference images from the U-RAFT model. We use two
metrics to compare the different loss functions: 1) SSIM



Fig. 3. Example deformable registration result from the blue-gel dataset, showing (a) the reference image Ir , the deformed image Id, and the reconstructed
deformed image I′d, and (b) the deformation field calculated between Id and Ir using U-RAFT, with a displacement vector plotted on a 4x4 pixel grid.
The vessel walls for the blue-gel images are manually annotated for visibility.

Fig. 4. Live-pig results showing reference, deformed, and reconstructed
deformed images for (a) small deformation, (b) medium deformation, (c)
large deformation, (d) vessel collapse, and (e) an atypical case of a vessel
decollapsing. The similarity between the deformed and the reconstructed
deformed images shows the efficacy of U-RAFT. Registration performance
drops for the case of a vessel decollapsing, but even in this atypical scenario
our approach fails gracefully.

[29] and 2) a feature-aware-SSIM (F-SSIM), which is SSIM
applied to the images after using SIFT to extract features as
described in Section II-B.

The results are summarized in Table I. In both SSIM

Fig. 5. (a) Zoomed-in view of an example live-pig reconstructed deformed
image I′d using Lus. (b) Zoomed-in view of the reconstructed deformed
image I′d using Lfa-cyclic-us. The use of the feature-aware cyclic loss function
helps remove the optical distortions observed in (a) for large deformations.

and F-SSIM, the cyclic loss function Lcyclic-us outperforms
Lus, and the feature-aware cyclic loss function Lfa-cyclic-us
outperforms the cyclic loss function Lcyclic-us. The cyclic
function outperforms the multi-scale structural similarity as
it adds a better regularization of the flow prediction. We
have also observed qualitatively, as shown in the example
in Fig. 5, that the combination of feature extraction and
cyclic loss leads to improved registration, particularly for
larger deformations.

TABLE I
COMPARISON OF REGISTRATION ERROR FOR DIFFERENT LOSS

FUNCTIONS. LFA-CYCLIC-US OUTPERFORMS THE OTHER TWO LOSS

FUNCTIONS IN TERMS OF BOTH SSIM AND F-SSIM.

Loss Function SSIM
(blue-gel)

F-SSIM
(blue-gel)

SSIM
(live-pig)

F-SSIM
(live-pig)

Lus 0.905 0.966 0.870 0.918
Lcyclic-us 0.907 0.967 0.883 0.927
Lfa-cyclic-us 0.909 0.969 0.886 0.931

B. Synthetic data generation for training deformed vessel
segmentation models

In this set of experiments, we evaluate the effect of using
synthetic images to improve the results of vessel segmen-
tation under tissue deformations. In the first experiment,
we evaluated the realism of the synthetic ultrasound images
created using the method described in Section II-C on the
blue-gel and live-pig datasets. Using the scanning mode



Fig. 6. Real and synthetic images from the blue-gel dataset and live-pig dataset are shown on the first and second row, respectively. The third row shows
the zoomed-in view of vessels from the second row. From left to right, the images show a gradual compression of the vessel shape as the force is increased.

Fig. 7. (a) Ultrasound image at 10 N. (b) Ultrasound image with predicted
segmentation mask using a U-Net model trained using real data collected
at 2 N. (c) Ultrasound image with predicted segmentation mask using U-
Net model train using real and synthetic data. The inclusion of synthetic
data improves segmentation accuracy. We also show a zoomed-in view of
the live-pig dataset where we are able to segment an almost collapsed vein
with the augmentation of the synthetic dataset.

of the robot, we collected ∼775 images on the blue-gel
phantom, and ∼ 70 images on a live pig at 2 N and 10 N each.
We then created synthetic images at 3 intermediate force
values F = 4N, F = 6N, and F = 8N, denoted as D4,syn,
D6,syn, and D8,syn, respectively. Example synthetic images
are shown in Fig. 6. We use SSIM to measure the similarity
between D4,syn, D6,syn, D8,syn and D4,real, D6,real and D8,real,
respectively. To show that our method does not introduce
excessive additional noise into the generated images, we

also evaluate the peak-signal-to-noise ratio (PSNR) [29] to
compare the noise-to-signal ratio between Dsyn and Dreal,
expressed in decibels (dB). Note that the maximum possible
PSNR value for 8-bit images is ∼ 48 dB. As shown in
the results in Table II, we see high SSIM scores as well
as high PSNR for both datasets indicating high realism of
the synthetic images. We observe slightly lower SSIM and
PSNR scores for the live-pig dataset compared to the blue-
gel dataset because of noisy in-vivo ultrasound images and
movement of the live animal during data collection.

TABLE II
SSIM AND PSNR BETWEEN REAL IMAGES AND SYNTHETIC IMAGES

AT INTERPOLATED FORCE VALUES

blue-gel live-pig
SSIM PSNR SSIM PSNR

F=4N 0.98 42.7 0.81 25.6
F=6N 0.97 40.8 0.81 25.6
F=8N 0.97 38.8 0.78 23.7

We now show how the synthetic images generated by
U-RAFT can be used as a data augmentation technique
to improve a vessel segmentation model with respect to
intersection-over-union (IoU). We use the ∼ 775 blue-gel im-
ages from Section III-B as our training dataset. We collected
an additional ∼ 175 images each for testing and validation
datasets. Regarding the live-pig dataset, we have obtained
data from two porcine models. Our training dataset consists
of the same ∼ 70 images per force value as in Section III-B,
with an additional ∼ 260 validation and ∼ 300 testing images
collected using the palpation mode of the robot. We denote



our training datasets as Dtrain
2,real, D

train
4,real, D

train
6,real, D

train
8,real,D

train
10,real.

The live-pig dataset has ten times fewer images than the
blue-gel dataset because of high cost and effort involved in
conducting in-vivo porcine experiments. The vessel labels for
these images are manually annotated by trained annotators
with at least 6 months of experience in labeling vessels in
ultrasound images.

For this experiment, we train individual U-Net models
on Dtrain

2,real, Dtrain
10,real and a combination of Dtrain

2,real + Dtrain
10,real

dataset. Further, we augment the Dtrain
2,real + Dtrain

10,real dataset
with multiple-force synthetic data (D4,syn, D6,syn, and D8,syn)
and use it to train a U-Net model. We also compare our
augmentation technique to the random elastic augmentation
mentioned in [4] to underscore the significance of aug-
menting using multiple-force synthetic data. We show the
improvement in segmentation on both the blue-gel and live-
pig dataset.

TABLE III
COMPARING PERFORMANCE ON THE TEST DATASETS OF A U-NET

MODEL WITH AND WITHOUT DATA AUGMENTION USING THE SYNTHETIC

DATASET. THE RESULTS FROM THE BEST PERFORMING DATASET ARE

HIGHLIGHTED.

blue-gel live-pig
Training
Dataset IoU IoU

All Vessels
IoU

Arteries
IoU

Veins
Dtrain

2,real 0.77 0.53 0.58 0.48
Dtrain

10,real 0.73 0.49 0.54 0.45
Dtrain

2,10,real 0.86 0.56 0.59 0.51
Dtrain

2,10,real+D
train
4,6,8,syn 0.89 0.62 0.64 0.58

Dtrain
2,10,real+D

train
rand-syn 0.86 0.56 0.60 0.52

As shown in Table III, augmenting the real dataset with
multi-force synthetic data outperforms the training done
using only real images. We also see it outperform the model
trained with random elastic deformations, highlighting the
need for realistic force-based augmentation using deformable
registration. We also compare the affect of force-based
augmentation on veins and arteries separately in Table III, as
arteries and veins experience different levels of deformation,
i.e. veins collapse easier than arteries. We see that there
is a larger improvement in IoU for vessels that experience
larger deformations, demonstrating that data augmentation
with deformable registration is of particular importance when
deformations are large. An example of this is shown in Fig.
7, where a model trained using only on 2 N images fails to
segment a nearly collapsed vein, but the model trained with
our synthetic images is able to segment the vein.

IV. CONCLUSIONS AND FUTURE WORK

In conclusion, this paper proposes an unsupervised ap-
proach for training an ultrasound-to-ultrasound deformable
registration model. We propose and compare three different
loss functions and show that a loss function based on feature-
aware cyclic loss performs best. We also demonstrate how
our approach, combined with a force-controlled robot, can
be used to generate synthetic deformed images to expand the

size of a femoral vessel segmentation training dataset and
improve vessel segmentation performance. We also validate
our approach on both a benchtop human tissue/vessel phan-
tom and in-vivo porcine images, highlighting the practical
application of our deformable registration model in real-
world medical imaging tasks. Overall, this paper presents
an innovative solution to address the challenges associated
with ultrasound imaging, particularly in the areas of image
registration and segmentation which are critical for accurate
vascular access.

As a part of future work, we plan to extend the U-RAFT
algorithm with a recurrent model to learn a physics model
in order to improve the deformation prediction especially for
predicting scenarios like vessel decollapsing. To improve the
live-pig IoU score, we will also like to further expand the
training dataset by using the spatial augmentation mentioned
in [8], along with force-based augmentation.
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