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Abstract—In a structural collapse, debris piles up in a chaotic
and unstable manner, creating pockets and void spaces that are
difficult to see or access. Often, these regions have the highest
chances of concealing a survivor and identifying such regions
can increase the success of a search and rescue (SAR) operation
while ensuring the safety of both survivors and rescue teams.
In this paper, we present an approach for ex post facto void
detection in rubble piles by using registered 3D point clouds
reconstructed from aerial images captured at multiple times on
the scene. We perform a temporal layering of these point clouds
to capture the dynamic surface of the rubble pile from multiple
days of the SAR operation and analyze this 3D structure to detect
candidate regions corresponding to void spaces. The layering
is achieved by a parallel 3D point cloud reconstruction of the
scene using the COLMAP Structure from Motion pipeline. The
void detection is achieved by applying multiple point filtering
criteria in thin segments of the 3D point clouds of the rubble.
We test our approach on aerial images collected from the
Surfside Structural Collapse at Miami in June 2021. Our method
achieves an improvement in registration compared to the use
of standard point cloud registration methods on individual 3D
reconstructions. Through our method, we see translation errors
reduce by 82%. Additionally, our method detects 9 out of 10 void
spaces that were observed by experts in the rubble.

Index Terms—Search and Rescue, Point Clouds, Registration

I. INTRODUCTION

Structural collapses lead to substantial loss of life and there-
fore, improving the response to structural collapse disasters is
a major focus in search and rescue robotics research [1] [2].
Of the 98 fatalities in the Surfside Structural Collapse, 9 were
deemed to not be caused by crush injuries, indicating that
9 victims might have been rescued if they had been quickly
found and extricated from the rubble [3], [4]. For rescue work-
ers, locating void spaces is paramount as these regions have the
highest chance of containing trapped survivors. But identifying
voids can be challenging as they are small, irregularly shaped,
and obscured by rubble [5]. Aerial imagery collected from the
disaster site with uncrewed aerial systems (UASs) provides
an broad view of the disaster scene which is helpful locating
multiple void regions at once. 3D reconstructions generated
from aerial images capture essential information that can be
used to identify and characterize void spaces [6] and analyze
terrain mobility for robots. While the use of 3D reconstructions
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Fig. 1. Key contributions presented in our work - 1) The use of UAS images
(Seen in a.) for generating a layered 3D reconstruction (Seen in b.) of the
collapse scene. 2) Voids annotated by experts (Seen in c.) being identified by
our method (Seen in d.).

is not real time yet, data analyzed through this method can help
predict the occurrence, location, appearance and likelihood of
voids in future collapses.

To this end, we use 3D point cloud reconstructions of a
disaster scene for void detection. A single 3D point cloud,
generated from aerial images through Structure from Motion
(SfM), is sufficient to characterize the surface of the rubble.
However, for analyzing the internal structure of voids, it is
essential to study the variations in geometry of the rubble as
it is cleared over time. This warrants the use of multiple 3D
reconstructions.

In this paper, we present a novel approach for semi-
automated ex post facto detection of voids in the rubble pile of
the Surfside Structural Collapse at Miami. Our pipeline utilizes
the COLMAP [7] SfM workflow to reconstruct point clouds
representing the dynamic SAR scene at different times. This
reconstruction is done in parallel for images from multiple
days in a single coordinate frame, resulting in registered
point clouds. This provides us with lower translation errors as



compared to using standard point cloud registration methods.
We use these stacked point clouds to determine regions that
have changed over time. These regions are processed for
detecting shape and color priors that we associate with void
spaces. The layers in the stack helps us assess the internal
dimensions of detected voids. The data we process and the
outcomes from our contributions are presented in Fig 1.

Our method can be applied to similar previous data or data
collected in the future to find regions presenting characteristics
of void spaces. A collection of such regions could one day help
build learning-based predictive systems for such disasters.

The rest of the paper is organized into the following sections
- Section II discusses related work in the areas of UAS
imagery, SfM for SAR operations, point cloud registration
and void detection. Section III discusses our data collection
and processing, followed by our methods in Section IV and
results in V. Finally, we present conclusions, discussion and
future work in Sections VI and VII.

II. RELATED WORK

Aerial imagery, either from satellite cameras or through
UAS flights on-site, can be used to assess damages to buildings
after disasters [8]. Images captured from UASs are increas-
ingly being leveraged for search and rescue operations like 3D
reconstructions of buildings at disaster sites post earthquakes
[9], floods [10], and fires [11], find traversable paths for
robots [12], and perform surveillance of constantly evolving
situations [13]. Temporal data capturing the evolution of the
surface of rubble can help in quantifying the volumetric
changes occurring during the clearing at a disaster site. Point-
based monitoring techniques together with aerial photogram-
metric surveys, are established techniques to derive surface
displacements [14]. Registration of multi-temporal 3D surfaces
is also used for quantifying changes in the natural environment
[15]. However, a layering approach to rubble analysis is novel
and our team is the first to apply this to a structural collapse.

3D point cloud reconstructions from a series of 2D images
can easily be achiecved with Structure-from-Motion (SfM), a
feature-based 3D scene reconstruction method in multi-view
reconstruction in computer vision. It is a standard technique
which uses 2D images to estimate the 3D structure of a scene
and is available for use through multiple open-source and
commercial software. While most studies conducting SfM on
disaster data have used commercial photogrammetry software,
a few recent studies [16] [17] show the use of open source
software such as COLMAP. [16] proposes a new solution to
autonomously map building damages with a commercial UAV
in near real-time. [17] develops a framework for a COLMAP-
based 3D reconstruction approach with a team of autonomous
small UASs using a distributed behavior model. [18] is a
comprehensive study outlining the performance of multiple
open source and commercial SfM software on reconstructing
3D point clouds ffor search and rescue data. It shows that
COLMAP is the fastest when it comes to performing feature
matching and it generates high fidelity reconstructions with
low errors. To the best of our knowledge, we are the first

to apply COLMAP to search and rescue data for generating
layered, registered reconstructions from multiple days.

While individual reconstructions from the scene done on
images from different days can be registered using standard
point cloud registration methods such as Iterative Closest Point
(ICP) [19], Coherent Point Drift (CPD) [20] , and PointNetLK
[21], these methods struggle to handle dynamic data. [22] tests
multiple variants of ICP and outlines some of the challenges
that cannot be handled by any of the variants. CPD is suscep-
tible to noise and discontinuities [23] and PointNetLK has to
be trained on search and rescue point cloud datasets to learn
to handle changes in geometry [24].

There are several methods for void detection in point clouds.
[25] presents a solution that has the user manually detect point
cloud voids, and is then able to fill these voids in geometrically
complex areas. This approach however cannot process both
smooth and sharp (or low and high frequency geometry) voids
at the same time. Other methods create polygon meshes from
input point clouds using a Delaunay Triangulation algorithm,
and then either perform a set of angle checks in order to
determine which vertices are on the boundary of a void [26],
or conduct a data search on the mesh to determine which
vertices are present only in a single polygon, and thus lie
on the void boundary [27]. [28] employs Ball Pivoting mesh
generation to improve void detection. While these methods
have shown results in automatically detecting holes in 3D
point clouds, they do not perform well on highly unstructured
data, and point clouds that are missing sections, such as that
of a rubble pile. The approach presented in this work uses
knowledge of geometric priors corresponding to voids to detect
candidate regions and makes certain heuristic choices.

III. DATA

The data used in this work was collected by flying a
quadrotor UAS (DJI Mavic 2 Pro) over the Surfside disaster
site in a grid-like flight pattern over multiple days of the
SAR operation. Aerial top-down RGB and thermal images,
as well as oblique images were collected during the flights.
GPS locations were not captured and therefore, camera poses
had to be estimated.

We use images captured over four days June 27 - June 30,
2021, from one mapping flight at roughly the same time each
day: June 27 (Day 1), 13:30, June 28 (Day 2), 13:30, June
29 (Day 3), 13:00, and June 30 (Day 4), 11:00 local time.
Each flight captured approximately 350 images, 75% of which
had the collapse rubble and standing portion of the building.
These four days were chosen because it captures the scene
when majority the large debris on the top of the rubble was
cleared. It is also a manageable set of data and with limited
human activity on the rubble. The flight altitude during the
days analysed in this work, was at an average ∼ 84 m.

IV. METHODS

Our pipeline begins with a reconstruction of registered
point clouds followed by point filtering for candidate region
detection corresponding to void spaces. The components of
the pipeline are visualized in Fig 2.



Fig. 2. Our pipeline with illustrations of results in intermediate steps.

A. Registering Point Clouds

Typically, all images processed through SfM result in the
reconstruction of a single metric 3D point cloud. Processing
all our images from four days together with SfM results in a
single noisy point cloud/3D rubble surface as features on the
dynamic rubble are not matched correctly over time. Since our
approach relies on stacking multiple point clouds capturing
the surface of the rubble from different days, images from
different flights need to be processed with SfM separately. As
SfM reconstructions are metric, the resulting point clouds will
not be in the same coordinate frame and will differ by rotation
and translation, requiring registration.

Early on, we processed our data to generate metric re-
constructions from different days with Agisoft Metashape
[29], assuming that standard point cloud registration methods
would achieve reasonable results with low translation and
rotation errors. However, a thorough comparison study of
three standard point cloud registration methods [30] showed
that these methods estimated registrations that at best had
a translation error of 0.83 m for point clouds which that
were initially 72 m apart. See Table I. Point clouds with
such translation errors will not suffice for assessing accurate
dimensions of void spaces which is necessary to determine
envelopes for robot operation. The key takeaway was that
standard point cloud registration methods failed for our highly
dynamic scene where multiple distractors such as vehicles,
people, collection containers etc., are present and reconstructed
in the point clouds. Additionally, it was observed these metric
reconstructions had small variations in scale.

This motivated us to pivot to registering the frames in

TABLE I
LOWEST ROTATION AND TRANSLATION ERRORS OBTAINED BY POINT

CLOUD REGISTRATION TECHNIQUES

Algorithm Rotation
Error (°)

Translation
Error (m)

Point-to-Point ICP 1.0389 0.833
Rigid Coherent Point Drift 0.7402 0.889

PointNetLK 0.7438 1.062

which the point clouds are reconstructed. For this, we use
a parallel data processing method which utilizes components
of the standard Hierarchical Localization (hloc) + COLMAP
pipeline [31] [32] [7].

As our flights collected images of buildings and roads
surrounding the collapse site, processing all images would be
overkill. To reduce our processing we retain only images per-
taining to the collapse. This is also done in an semi-automated
manner using learning-based image retrieval with NetVLAD
[33]. First, we manually picked all images capturing the rubble
and the adjoining standing portion of the building from the set
of all images captured on Day 1. This formed our base set of
images. Each image in this base set was then passed as a
query to NetVLAD and the closest match from each of the
consecutive days was stored in the retrieved set of images for
the respective day.

All images from the base set and the three retrieved sets
were then processed with COLMAP for a joint camera pose
estimation for images from all days in a single coordinate
frame. A reconstruction was consequently obtained through
the COLMAP pipeline of feature matching, geometric verifica-
tion, image registration, triangulation and bundle adjustment.
This provides us with camera poses for images from each
day, but is however, a noisy combined sparse reconstruction
of the scene which fuses data from all days. To obtain clean
registered dense point cloud reconstructions, we use estimated
joint poses but process dense reconstruction in parallel for data
from different days. This resulted in four registered dense point
clouds, one from each day, representing stacked layers of the
rubble’s surface as it was cleared.

To refine this registration further for the rest of our pipeline,
we apply ICP to determine translation along the depth axis (Z
axis). This is done to minimize translation error to zero for
obtaining accurate measurements for void dimensions. Once
the translation error is negligible, we proceed with candidate
void detection.

B. Detecting Candidate Regions for Void Spaces

In this work, based on a few previously detected voids in
our data by SAR experts [34], we obtained a few appearance
priors for void regions and tried to automate the detection of
regions displaying such priors. We deemed the detected 3D
point cloud regions corresponding to such priors as candidate
void regions which were then compared to the regions detected
by experts as voids in the rubble. The regions verified by
experts as corresponding to voids (both naturally occurring,



as well as caused by excavation) are annotated over a point
cloud reconstruction of the scene from day 1. See Fig 3.

Fig. 3. Annotated regions corresponding to voids located in the collapse scene
by experts. (Naturally occurring voids shown in double boundaries and voids
created by excavation shown in single boundaries)

As the rubble itself is highly dynamic due to the rescue
operations, feature matching in images of the rubble could
be sparse and erroneous. Therefore, images of static struc-
tures around the rubble is retained and used in point cloud
reconstruction through the SfM pipeline. However, these static
structures need to be eliminated before we analyze the point
clouds for void detection. For this purpose, we manually define
a bounding box to crop all four point clouds and retain only
points corresponding to the rubble.

Once this is done, we proceed to slice the point clouds along
the X and Y axes with a slicing width of 0.25 m. These stacked
slices or ’cross-sections’ are analyzed through plane fitting and
color thresholding for detecting candidate regions. Voids in
structural collapses tend to present under large debris such as
concrete slabs, columns etc., [5] and are dark near the opening
(if present) at the surface. These are the two characteristics we
look for.

1) Plane fitting for sharp edge detection: To detect sharp
edges, we analyze the angles between planes fit to the surface
of the rubble. For fitting reasonably small planes to the surface,
we need to divide the point cloud into point clusters which are
small, having geometries that can be approximated by planes.
We leverage octrees for this purpose and obtain such clusters
from deep tree cells.

An octree was created for each individual sliced point cloud
in the cross-section with a maximum depth of 8. We queried
point clusters at the deepest level of the octree and found
through multiple trials that this gave us adequately granular
plane fitting. We fit a plane to each point cluster using the
least-squares method and also find a projection of the centroid
on the fit plane. Using these projected centroid points to find
the nearest neighbours, we then calculated the angles of a
given plane to its two closest neighboring planes. We chose
two neighbours as each fit plane spans the entire width of
the slice and the two nearest neighbours capture the angles of

the current plane with its preceding and following planes. Any
angle determined to be greater than 45◦ indicated a sharp edge
and the corresponding point clusters resulting in this angle are
retained as part of a candidate region.

2) Color thresholding for dark region detection: The re-
tained points from the plane fitting procedure are then sub-
jected to a color thresholding to detect dark regions [35]. All
points with colors between [0, 0, 0] and [0.2, 0.2, 0.2] in the
RGB space are retained with the others being discarded.

3) Point density as an indicator of void spaces: In our data,
we find that the above two processes are sufficient to detect
most candidate void regions sufficiently well. However, we
also hypothesized and tested a filtering based on point density
for detecting these candidate regions. Most void spaces with
a sufficiently wide openings would present as a dark region
in images. Standard feature detection methods will not detect
feature matches in the pixel areas corresponding to these dark
regions. Therefore, unless extensive hole filling methods are
applied to make the point cloud reconstructions smooth, such
dark regions could appear as holes or low point density patches
in the reconstructed point cloud [36]. Looking for such regions
can be an alternative to detecting dark regions, and in tandem
with plane fitting, can help capture candidate regions when
the color thresholding behaves unexpectedly due to change in
lighting or needs fine-tuning.

In our implementation, for point clusters retained after
plane fitting to slices, we checked for point density by
defining a neighbourhood radius. All points having a number
of neighbours in this radius lower than 0.75 times the average
across the point cloud, were retained as part of identified
candidate regions. We used this method after plane fitting as
a parallel step to color thresholding and add newly detected
regions to those identified by color thresholding.

After these methods, we apply a final noise filtering by
using surface normals and DBScan Clustering with eps = 0.2
[37]. All point clusters which present surface normals pointing
upwards are likely part of planar rubble and not voids. DB-
Scan helps us remove very small point clusters which were
erroneously picked up during plane fitting as it is susceptible
to noise. It also helps us group sufficiently close point clusters
as being a part of a larger void. Through this, we are able
to retain larger detected point clusters corresponding features
seen for voids.

We implement this detection method through two data pro-
cessing schemes. In the first scheme, all candidate regions are
found in the cropped point cloud from day 1 and no data from
the consecutive point clouds is used. The main assumption
here is that most regions having void-like characteristics would
be visible before rubble clearing begins. However, taking into
account that more void spaces can be uncovered as debris are
cleared, we also use a second scheme, where only the point
cloud regions with detected height changes as compared to the
next point cloud, are processed through our detection pipeline.



TABLE II
ROTATION AND TRANSLATION ERRORS FOR REGISTRATION OBTAINED

FROM OUR METHOD

Comparison Pair Rotation
Error (°)

Translation
Error (m)

Day 2 to Day 1 0.0002 0.0744
Day 3 to Day 1 0.0006 0.1755
Day 4 to Day 1 0.0017 0.1929

C. Finding the maximum height of the detected voids

Once all candidate regions are located, we enlarge them
by 3 m in both the X and Y axes to analyze a slightly
larger region for obtaining the maximum height. For each
point in the enlarged detected candidate region, by finding
the corresponding points in the next layer, we compute point-
wise distances. We provide the maximum distance as an upper
bound on the height of the candidate void. In reality, given that
voids are typically situated beneath large and thick debris, it
is most likely possible that the true height of the void is lower.
However, this value is hard to ascertain through imagery alone.

V. RESULTS

A. Registration

As we assigned images from day 1 to be the base set for
our registration through SfM pipeline, we consider the point
cloud reconstructed from images from day 1 to be the target,
and the remaining point clouds to be sources. Rotation and
translation errors from our method are presented in Table II.

It is observed that the rotation error is mostly negligible.
The translation errors, with an average value of 0.1476 m,
have drastically reduced in comparison to using standard point
cloud registration methods for individual metric reconstruc-
tions. From a minimum translation error of 0.83 m [30], we
are able to improve registration with our method by reducing
the translation error by a further 0.68 m on an average. This
is an 82% reduction in translation error.

Most of the translation offset in the reconstructions was
along the Z (vertical) axis, perhaps due to depth ambiguity in
the SfM arising from the dynamic nature of the collapse scene
and a low ratio of oblique images.

B. 3D Reconstruction

COLMAP is an open source SfM solution that has not been
applied widely for reconstructing search and rescue scenes,
and has not been used to reconstruct multiple registered time-
instance point clouds for a highly dynamic scene. In addition
to quantifying how well it works for registration, we also
quantify its performance in 3D reconstruction. This is done
to provide a better understanding of how well COLMAP
fares against reconstructions from commercial photogramme-
try software like Agisoft Metashsape which are widely used
by SAR experts.

We compare a point cloud reconstructed from our method
against a reference reconstruction from the same data with Ag-
isoft Metashape. We find that the average Root Mean Square

TABLE III
PERFORMANCE OF OUR DETECTION METHOD FOR TWO PROCESSING

SCHEMES

Point Cloud
Processing

Scheme

Naturally
Occuring

Voids
Detected

Excavation
Related
Voids

Detected

False
Positives

Total
Candidates

Point Cloud
from Day 1 4/4 5/6 18 28

Height
thresholded

regions
4/4 5/6 6 16

Error is 0.115 m. The application of statistical outlier filtering
shows that 1.7% of the points in our reconstruction are outliers.
These values indicate that the COLMAP reconstruction has
a high fidelity and is very close to the reconstruction from
Agisoft Metashape [38]. Some regions with sparse correspon-
dences lead to gaps in the reconstruction from COLMAP,
however, the region corresponding to the rubble is as dense as
the reconstruction from Agisoft Metashape.

C. Void Detection

We implement the candidate void detection pipeline - (1)
for the entire cropped region of the point cloud pertaining
to the rubble from day 1, and (2) for the points retained
in the crop from day 1 after checking for height changes
between subsequent layers. The detected regions are visually
overlayed on the point cloud of the collapse site, shown in Fig
4. We compare the regions detected by our pipeline against
the ones identified by experts as voids and present how many
of the naturally occurring and excavation artifact voids were
detected. We also present how many extra candidate regions
(false positives) were captured in the point cloud which did not
correspond to voids. See Table III. Locating survivors is most
important, therefore false positive detections are less harmful
than missed void detections.

Here, we observe that both point cloud processing schemes
detect of 11 out of 12 void regions in the rubble pile, failing to-
gether only on a single region corresponding to an excavation
artifact. One key result to note is that the second processing
scheme, which uses only the point cloud regions that have
changed in height over time, provides us with lesser false
positive candidates, and is therefore, the preferred processing
scheme. This shows that the layering method is better for
candidate void detection.

Figs. 5 - 8 show the regions of the rubble corresponding to
four detected void regions (two naturally occurring and two
excavation artifacts) and their corresponding cross-sections
showing maximum heights.

D. Heights of void regions

Table IV shows the cause of formation and measured
maximum height found through our method for all 10 expert-
identified voids. As the cyan void was not captured by our
method, we do not present a measured height for it. We find
that the average maximum height of candidate void regions is



Fig. 4. Top: Point cloud from day 1 bounded by user-defined crop. Bottom:
Detected candidate void regions (true and false positives) overlayed on the
point cloud.

Fig. 5. The naturally occurring green void region and its corresponding cross
section along the XZ axis. The removal of some material in the green void
region is seen between day 1 and day 2.

Fig. 6. The naturally occurring magenta void region and its corresponding
cross section along the XZ axis. Features similar to the green void are observed
in the cross section.

TABLE IV
DETECTED VOIDS AND THEIR MEASURED MAXIMUM HEIGHTS

Identified
Void Cause

Max
Height

(m)

Identified
Void Cause

Max
Height

(m)
Magenta Natural 1.10 Yellow Excavation 1.62

Green Natural 0.97 Cyan Excavation -
Lime Natural 2.29 Orange Excavation 1.84
Pink Natural 1.30 Purple Excavation 1.94
Blue Excavation 1.59 Maroon Excavation 1.75

1.6 m. Most of these voids themselves are not large enough
to be survivable. However, they could offer breathing space
to survivors. These dimensions and the corresponding cross-
sections show the types of void spaces that a robot would need
to reach and inspect.

VI. CONCLUSION

To advance a crucial part of SAR operations, we present
a novel method for generating a layered multi-day 3D point
cloud reconstruction of a dynamic scene and apply this to
ex post facto void detection in rubble with limited human
input. We utilize image registration and joint camera pose
estimation in SfM to reconstruct registered point clouds in
parallel, becoming the first to do so for a highly dynamic



Fig. 7. The excavation artifact occurring for the blue void region and its
corresponding cross section along the XZ axis. The presence of pillars shows
two peaks in the cross section. Gaps were formed under the pillars as debris
was cleared.

and unstructured SAR scene. We show the benefit of using
this registered layering of point clouds not only to determine
the heights of uncovered voids but also to detect candidate
void regions with lower false positives. Our method for void
detection is a systematic approach that starts with all points in
the rubble region of the point cloud and filters out uninteresting
regions through multiple priors such as checks on edges and
color. The whole process helps us reduce errors in point cloud
registration and make our height measurements between layers
accurate. We also show that our candidate void detection
method successfully locates all naturally occurring voids in
the rubble and captures almost all excavation-generated void
regions, with a reasonable number of false positives.

VII. DISCUSSION AND FUTURE WORK

We observe that the translation error from our registration
method is majorly along the Z axis which is the depth axis in
our SfM pipeline. This is caused due to depth ambiguity which
can be lowered in future data collections by including more
oblique images. Post our registered reconstruction, we use ICP
for estimating transformations that minimize our translation
errors to zero. However, we perform this registration only
along the Z axis. This is done as we observed that the dynamic

Fig. 8. The excavation artifact occurring for the maroon void region and its
corresponding cross section along the YZ axis. There was a gap created under
a ledge after rescue workers cleared some debris.

features in the point clouds were affecting the point corre-
spondences detected in ICP and causing the algorithm to fall
into local minima during the optimization process. Using the
obtained transformations for registration in all three axes were
causing translation errors to increase further. This fundamental
problem motivates the development of a point correspondence
finding method that can work well with dynamic point clouds.

Currently, we require a human to specify the point cloud
region corresponding to the rubble. The layering approach can
help us identify dynamic elements through height differences.
While this should ideally only capture parts of the rubble
that were cleared, it captures many distractors such as people,
vehicles, vegetation etc., as well, making a human-defined crop
necessary to retain purely the rubble for void detection. In the
future, the application of point cloud segmentation can help
segment these dynamic features and remove them from the
scene.

Lastly, our candidate void detection method depends on
certain heuristic values which we have fine-tuned for our
dataset. While these can be tweaked to suit other datasets,
efforts should be made to adjust the method to suit multiple
SAR datasets. For this purpose, testing on other publicly
available datasets is planned.
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