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Abstract. We develop a procedure for automated trajectory generation for robotic
spray painting applications. Painting requires that the spray gun deposit paint at
each point on the target surface such that the variation of the resultant paint
deposition is within acceptable limits; we term this the uniform coverage problem.
To understand the key issues in the uniform coverage problem, we consider surface
patches that are geodesically convex and topologically simple to represent realistic
automotive surfaces. Our goal is to understand the relationship between the spray
gun trajectory and the following output characteristics: deposition uniformity, cycle
time, and paint waste. Our planning approach decomposes the coverage trajectory
generation problem into three subproblems: selection of the start curve, selection
of the speed profiles along each pass, and selection of the spacing between the
passes. Using concepts such as area magnification, the Gauss-Bonnet theorem from
differential geometry, and standard optimization procedures, we present procedures
to solve each subproblem independently of the others. Finally, we demonstrate our
trajectory planning procedures in simulation as well as experimentally on simple
surfaces that approximate real automobile surfaces.

1 Introduction

Today, robots are widely used for spray-painting in the automotive industry.
Among the different kinds of spray painting mechanisms available, electro-
static rotating bell (ESRB) atomizers are one of the most popular. However,
the distribution of paint generated by an ESRB atomizer is relatively com-
plex. This complexity is further compounded as the spray gun moves over
non-planar automotive surfaces, making the task of planning paths for such
atomizers challenging. Paint specialists typically produce the coverage paths
based on their experience, often requiring 3 to 5 months to completely plan
trajectories on a new automobile model. This programming time is a critical
bottleneck in the “concept-to-consumer” timeline for bringing a new auto-
mobile to the market. Automating the process of path planning will help the
paint specialists reduce this programming time significantly by offering them
reasonable guidelines for effective paths.

In this work, we develop procedures for automated generation of spray
gun trajectories to optimize the output characteristics over simple surfaces.
By “simple surfaces,” we mean surfaces that are geodesically convex and have
no holes. A surface is termed geodesically convex if the shortest curve joining
any two points on the surface is a geodesic (see Fig. 1(a) and 1(b)). We use
such surfaces to closely approximate the auto-body surface parts.
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Fig. 1. (a) A geodesically convex bent sheet; here the shortest curve joining any
two points is a geodesic. (b) the surface is not geodesically convex because the
shortest curve in the surface joining two points A and B is not a geodesic. (c) We
generate a coverage path on arbitrary simple surfaces by selecting a start curve and
offsetting it sideways within the surface to generate new passes.

To generate a spray gun trajectory termed a coverage trajectory that uni-
formly covers (i.e., deposits paint on) the target surface, the path planning
algorithm must determine the orientation of the passes in the path, the spac-
ing between them and the speed along the passes. The dimensionality of the
variables required to specify these three entities is huge. Therefore, global
optimization procedures that attempt to determine all coverage variables si-
multaneously are computationally expensive and often not practical.

We seek to make the optimization of coverage variables tractable by de-
composing the coverage problem into three relatively independent subprob-
lems: i) selection of a “seed” pass termed the start curve on the surface (see
Fig. 1(c)), ii) selection of the speed profile along a given pass, and iii) se-
lection of the optimum spacing between a given pass and its adjacent pass.
Based on these three subproblems, we generate the coverage trajectory using
the procedure described in Algorithm 1.

Data : Target surface CAD model, parameters for deposition model

Result : Spray gun trajectory

Select a pass termed the start curve on the surface;
Optimize end-effector speed along the start curve;
repeat

Offset the most recently generated pass within the surface to its “right”
side to obtain a new offset pass;
Optimize end-effector speed along the new offset pass;

until Offset pass lies completely outside the surface;
Designate the start curve as the most recently generated pass;
repeat

Offset the most recently generated pass within the surface to its “left” side
to obtain a new offset pass;
Optimize end-effector speed along the new offset pass;

until Offset pass lies completely outside the surface;

Algorithm 1: Path Planning algorithm

The rationale behind decomposing the coverage problem into the three
subproblems is that each subproblem can be solved in a reasonable amount of
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time independently from the others. The cycle time for the coverage trajec-
tory is primarily dependent on the orientation of the passes in the path. The
selection of a particular start curve essentially determines the orientation of
the rest of the passes, and consequently the cycle time required. The struc-
ture of the paint profiles measured in the direction orthogonal to a pass is
relatively consistent along the direction of the pass (see Fig. 2(a)). Therefore,
the uniformity of paint deposition can be seen as having two components: 1)
uniformity along the direction of the passes, and 2) uniformity in the di-
rection orthogonal to the passes. Speed optimization attempts to produce
similar paint profiles along a pass, whereas the optimization of the spacing
between passes, termed the index width, attempts to overlap the paint profiles
of two adjacent passes appropriately to produce uniform paint deposition in
the direction orthogonal to the passes.

In this work, we continue our prior work on deposition modelling and
start curve selection, briefly discussed in Sections 2.2 and 2.3 respectively, by
providing procedures for speed optimization and index width optimization.
We formulate the speed optimization problem in Section 3. We address the
index optimization problem in Section 4 for surfaces with increasing geomet-
ric complexity: planar surfaces, extruded sheets and surfaces with non-zero
Gaussian curvature. Finally, we demonstrate our coverage procedures for a
variety of surfaces in simulation as well as experimentally in Section 5.

2 Prior Work

2.1 Related Work

Most prior researchers typically focus on a particular subproblem for the path
generation procedure: 1) start curve selection, 2) speed optimization, or 3)
index width optimization. However, only a few researchers study all the three
problems together.

For start curve selection, most prior researchers [1–4] select the pass ori-
entation that aligns with one of the faces of a bounding box that fits the
surface, while choosing the relative position of the start curve arbitrarily.
Such an approach of start curve selection implicitly tries to minimize cycle
time, but does not consider the effects of the relative position of the start
curve on paint uniformity and can lead to poor uniformity results. For a
planar surface, Huang [5] gives a sophisticated approach for minimizing the
cycle time for coverage by minimizing number of passes in the path. Kim and
Sarma [6] use vector fields to choose the pass orientation that minimizes the
cycle time with an implicit constraint on the paint deposition uniformity. The
effect of the vector field orientation on the paint uniformity is not explicitly
considered. In an attempt to maximize uniformity, Smith et al. [7] select the
orientation of the passes by determining the section plane that is maximally
orthogonal to the surface. Their approach does not consider minimizing the
cycle time or the paint waste and is sensitive to small curvature changes in
the target surface.

One of the most general frameworks for efficiently optimizing the speed
profile of a coverage path is given by Antonio and Ramabhadran [8]. Their
work assumes that the coverage path is already known and the deposition
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Fig. 2. (a) A typical deposition model and the paint profile across the paint swath
on a flat planar sheet. (b) Our current model determines the deposition on any
given point on an arbitrary surface using concept of area magnification under the
linear projection model.

model is either a bivariate Cauchy or a Gaussian distribution applied to a
flat panel. Kim and Sarma [6] also present a speed optimization model for a
coverage path generation framework based on vector fields with a particular
focus on the process cycle time.

Most prior path planning approaches consider simplistic deposition mod-
els such as circular [1], parabolic [4,9,10], or beta distributions [2]. Likewise,
most of these approaches make first order approximations to the surface ge-
ometry, thus limiting their use for realistic auto surfaces. In these cases, the
selection of index widths between adjacent passes is easier [1–4,6,7], but fails
to capture the realistic scenario.

Finally, commercially available path planning systems such as RobCADTM 1

project a user-specified planar path on to the target surface and yield the out-
put characteristics of the resultant coverage path. The limited scope for the
specification of the deposition model and the requirement for manual speci-
fication of the coverage path limit the utility of such software tools.

2.2 Our Prior Work: Deposition Modelling

In automated path planning systems, it is necessary to have a paint deposi-
tion model that can predict paint deposition on an arbitrary surface with a
reasonable accuracy to effectively determine the suitability of a given cover-
age trajectory. In [11], we develop a simple model that provides a significant
improvement in paint prediction over the earlier models while retaining suffi-
cient tractability for use in our planning tools. The deposition model captures
the shape of the paint distribution from a spray gun in an analytical represen-
tation. The deposition model is composed of one bivariate and two revolved
Gaussians [11,12]. We extract the parameters for the deposition model by
applying data fitting techniques to the experimental data obtained by paint-
ing flat panels (see Fig. 2(a)). We then determine the deposition at any point
on a given arbitrary curved surface by using the area magnification concept
from differential geometry (see Fig. 2(b)).

1 A product of Tecnomatix Technologies Ltd.
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For simplicity, our current model assumes that the paint particles flow in
a straight line after leaving the spray gun nozzle. While this is an incorrect
assumption, our experience shows us that this assumption is reasonable for
surfaces with low curvature. In the future, we plan to extend our techniques
to include more realistic projection models. We would like to emphasize that
although deposition models are required by the planning procedure, the cov-
erage planning procedures we develop in this work are independent of any
particular deposition model.

2.3 Our Prior Work: Start Curve Selection

The choice of start curve impacts the entire coverage path and its cycle time.
Unfortunately, the search-space for the start curve selection problem is huge.
In [13], we select a start curve such that the resultant coverage path attempts
to minimize the cycle time and yields the desired paint deposition unifor-
mity. Uniformity of paint deposition suffers severely in the worst possible
case where the passes in the coverage path self-intersect. The more the start
curve bends “sideways” in the surface, or equivalently, the higher the geodesic
curvature of the start curve, the greater the risk that the subsequent offset
curves will exhibit a self-intersection [13,14]. Therefore, to minimize the pos-
sibility of self-intersections on the offset curves, we seek to select start curves
that have low geodesic curvature, or ideally, are themselves geodesic. This
restriction on the choice of start curve to the family of geodesics reduces the
start curve selection problem to determining two variables: 1) the orientation
of the (geodesic) start curve, and 2) the relative position of start curve with
respect to the surface boundary.

Our path construction procedure (see Algorithm 1), first offsets the start
curve and then continues to offset newly generated passes until the surface is
covered completely. To ensure that the subsequent offset passes are also free
from self-intersections, we must ensure that the geodesic curvature on any
newly generated pass is also minimal. Thus, ideally we want to select a start
curve such that all the resultant passes are geodesics. However, on a surface
with non-zero Gaussian curvature, the offset of a geodesic curve is, in general,
not a geodesic. In such a case, the position of the start curve relative to the
boundary dictates the resultant geodesic curvature on the offset curves.

To examine the effect of surface Gaussian curvature K on the geodesic
curvature κg of the offset curves, we apply the Gauss-Bonnet theorem to the
region B bounded between the start curve, Cst, and its offset curve, Cof , (see
Fig. 3(a)) and arrive at

∫

Cof

κg =

∫

B

K +

∫

Cst

κg. (1)

Equation 1 tells us that the more the surface bounded between the offset
curve and the geodesic start curve bends, the more the geodesic curvature
of the offset curve increases. On a surface where the sign of the Gaussian
curvature stays the same, the further away we place the offset curve from the
start curve, the higher the geodesic curvature of the offset curve is. There-
fore, the possibility of self-intersection is maximal on the bounding passes
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Fig. 3. (a) Application of Gauss-Bonnet theorem to the region bounded between
the start curve and the offset curve. (b) We select the orientation of the start curve
that minimizes the surface altitude in the indexing direction, and consequently the
cycle time.

(see Fig. 3(a)). To minimize the geodesic curvature on the bounding passes,
Equation 1 tells us that the start curve should divide the surface into two
parts such that the integral of the Gaussian curvature is equal over each
part. This approach determines the relative position of the start curve on the
surface as defined by the geodesic Gaussian curvature divider curve.

To determine the orientation of the start curve, we approximate the
geodesic start curve by a curve of planar intersection that is also a Gaus-
sian curvature divider. To ensure that such an approximation is sufficiently
close to being a geodesic, we require that the normal to the section plane
chosen for intersection is orthogonal to the average target surface normal.
We generalize the concept of surface “altitude” from planar surfaces [5] to
non-planar surfaces, and determine the orientation of the section plane that
minimizes the surface altitude in the direction normal to the section plane
(see Fig. 3(b)). The resultant orientation of the start curve yields a coverage
path that minimizes the number of turns in the coverage path (for the given
constraint on section plane normal) and equivalently, the cycle time and the
paint waste.

3 Speed Optimization

In the automobile industry, constant speed trajectories are typically used. Be-
cause of the relatively large size of the ESRB deposition pattern with respect
to a typical automotive surface, constant speed profiles typically require long
oversprays to ensure that the boundary effects, which produce non-uniform
paint deposition near surface boundaries, are minimized. If there is a re-
striction on the maximum amount of paint waste, shorter oversprays could
be used, but not without a compromise in the paint deposition uniformity.
Additionally, on non-planar surfaces, the changes in the surface curvature
along the pass result in non-uniform paint deposition along the pass. Speed
optimization attempts to compensate for these curvature related results and
improves the uniformity of paint deposition in the direction of the passes.

Unlike prior approaches [6,8] that use speed optimization techniques over
the entire path, our approach uses a semi-global method that optimizes speed
profiles on a pass-by-pass basis. The underlying assumption in our approach
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pattern.

is that the speed optimization improves the uniformity in the direction of
the passes and a local change in the speed profile affects the paint deposition
uniformity on only a subset of the surface. Such an approach tries to combine
the best of global and local optimization techniques.

Our implementation first samples a “band” of the surface around a given
pass by constructing several “sub-offset” curves which are the similar to the
offset curves of the current pass, but with a much smaller spacing between
them (see Fig. 4). Our objective here is to minimize the weighted sum of
standard deviations of paint deposition along all sub-offset curves, thus min-
imizing the variations in the paint profile along the pass.

Our implementation first discretizes the given spray gun pass into n linear
segments of length si. We assume that the speed of the spray gun tool center
point (TCP) does not vary in a given segment i and is given by vi. The speed
profile along the pass is represented by the n-tuple V = {vi : i ∈ [1, n]}.
The time ti spent by the spray gun in each segment i of the pass is equal to
si

vi
. Instead of optimizing the speed profile V explicitly, we optimize the time

profile T = {ti : i ∈ [1, n]}, and then calculate V accordingly.
To determine the standard deviation of paint deposition along each sub-

offset curve j, we discretize the jth sub-offset curve into mj linear segments
of length smj

. Let Dj represent the matrix [def ] which gives the deposition
flux on segment e of the jth sub-offset curve when the spray gun tool center
point lies at the center of segment f of the current pass.

For a given time profile T, the resultant paint deposition on the jth sub-
offset curve is given by DjT. Note that DjT is a mj-tuple whose ith compo-
nent gives the deposition on ith segment of jth sub-offset curve. Let Sj be
the sum of all elements of vector DjT. The average paint deposition kj along

the jth sub-offset curve is then equal to kj =
Sj

mj
. The normalized standard

deviation of paint deposition along jth sub-offset curve is then computed as

||
DjT−Kj

kj
||, where Kj is a mj-tuple with elements of constant values equal to

kj .
The constraints on the maximum and minimum speed are specified at

each segment along the spray gun pass by requiring si

vmax
≤ ti ≤

si

vmin
∀i.
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The acceleration constraint has a non-linear form in each segment which we
linearize by using a conservative linear constraint that always satisfies the
intended acceleration constraint. Here, the bounds for the maximum acceler-
ation and deceleration are assumed to be amax and −amax respectively.

Let wj =
kj

∑

i
ki

be the weight of the normalized standard deviation along

jth sub-offset curve in the objective function. Then, the complete speed op-
timization problem is formulated as:

min
T

∑

j

wj

kj

||DjT − Kj|| (2)

such that D0T = K0

si

vmax

≤ ti ≤
si

vmin

, and −amax

si+1si
2

vmax
3

≤ si+1ti − siti+1 ≤ amax

si+1s
2
i

vmax
3

.

At the beginning of the optimization procedure, we specify an initial time
trajectory Tbeg that corresponds to a constant speed profile with speed vnom,
where vnom is chosen according to the desired average paint thickness. Each
vector Kj is then calculated using Tbeg, that is, Kj = DjT

beg. We then
have all the initial conditions required for the optimization, and execute the
optimization algorithm. Without loss of generality, we assume that the 0th
sub-offset curve is along the spray gun pass. The equality constraint D0T =
K0 enforces that all speed profiles yield approximately the same average paint
deposition on the surface.

The objective function in our speed optimization formulation is a quadratic
form in the variable T with all constraints (i.e., equality and non-equality)
that are linear in T. This quadratic constrained optimization can be solved
using standard optimization techniques with superlinear convergence. Note
that a fine path resolution {si} is necessary for accurate uniformity estima-
tion, but results in long running times due to large number of inequality
constraints. We address this issue by using a fine path resolution for evalu-
ation of the objective function, but optimizing the speed profile over only a
sub-sample of non-contiguous segments. The speed at the rest of segments
in the path is determined by assuming a linear variation in speed between
the segments for which we optimize the speed. This approach solves the opti-
mization problem in a relatively short amount of time, and yet is acceptable
as the industrial robots are typically “taught” with only a few points.

4 Index Width Optimization

The goal of speed optimization is to produce acceptable paint uniformity
along the direction of a pass. Given speed optimized passes, the remaining
problem is to decide how to place passes next to one another on the surface –
that is, select index widths between the passes. The objective is to select index
widths such that the paint profiles of adjacent passes overlap appropriately
and produce acceptable uniformity orthogonal to the direction of the passes.
At the same time, the index widths should be as wide as possible in order
to reduce the number of passes in the coverage path, thereby reducing the
cycle time and paint waste. In this section, we present procedures for index
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width optimization on surfaces with increasing geometric complexity: planar
surfaces, extruded surfaces, and surfaces with non-zero Gaussian curvature.

4.1 Determining Index Widths on Planar Surfaces

On a planar surface, geodesics are simply straight lines. Therefore the start
curve, chosen as described in Section 2.3, will be a straight line. The offsets
of the start curve are parallel straight lines and accordingly the resultant
coverage path consists of a family of parallel lines.

To study the effect of index width on paint deposition uniformity, we plot
the graph of the normalized standard deviation of paint deposition versus
index width between passes (see Fig. 5) [12]. To evaluate the paint unifor-
mity, we consider the interactions between the deposition profile curves of a
sufficiently large number of passes spaced at constant index width.

From the graph, we observe that there is a “sweet spot” of index width
that corresponds to a local minimum of the standard deviation (around 525
mm index width for the atomizer whose deposition pattern was considered
in Fig. 5). Painting the target surface at this higher index width is desirable
because higher index widths reduce the process cycle time. Unfortunately, the
sensitivity of the standard deviation of paint deposition to the index width
is high at the sweet spot; in other words, small changes in index width at the
sweet spot produce high variations in paint deposition uniformity. In order to
ensure that the paint deposition uniformity over the surface is not sensitive to
small changes in index width, we typically do not use the sweet spot spacing
between the passes.

Our implementation defines the index width search range, SR, as a finite
collection of potential index widths taken from the closed interval [wmin, wmax]
sampled at an appropriate resolution wres. The minimum index width, wmin,
is chosen according to the cycle time consideration, while the maximum in-
dex width, wmax, is chosen according to the standard deviation sensitivity.
To reduce the computational costs, we choose wres as large as possible, yet
sufficiently small to meaningfully capture the variation of uniformity as a
function of index width. Next, from the index width search range, we de-
termine the set of feasible index widths that yield the normalized standard
deviation of paint deposition below the user specified limit.

We then establish a cost function over the set of feasible index widths by
assigning costs inversely proportional to the index width, thus penalizing the
process cycle time. The feasible index width that minimizes the cost function
is chosen as the optimum index width. By the design of the cost function,
the optimum index width is the largest index width that yields an acceptable
uniformity. Since the planar surface locally appears the same everywhere, the
same optimum index width is chosen for all passes, assuming that there is
sufficient overspray.

4.2 Determining Index Widths on Extruded Sheets

To lift the index width selection framework from planar surfaces to non-
planar surfaces, we first consider a special class of target surfaces – extruded
sheets. Extruded surfaces have zero Gaussian curvature, and are non-planar
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in general. Many automobile surfaces, such as doors, are designed based on
extruded surfaces, making this a useful class of surfaces.

Although different choices of start curve orientation are available on the
extruded surface as described in Section 2.3, in this section we assume that
the passes are along the zero curvature direction (see Fig. 6). Thus, the surface
curvature orthogonal to each pass varies from pass to pass. In general, the
paint profiles along any two passes on an extruded surface are different due to
the variation in surface curvature. As a result, the optimal spacing between
passes varies as surface curvature changes.

Our path planning approach generates new passes by offsetting known
passes as described in Algorithm 1. At a given instance of time, we term the
known pass we are offsetting the current pass. We then number all known
passes relative to the current pass along the indexing curve that is orthogonal
to the current pass. Let the known passes be denoted by {C

−m, . . . , C0}, where
C0 is the current pass and C

−m is the mth known pass from the current pass.
Similarly, we denote n number of future passes, whose locations are unknown,
by {C1, . . . , Cn}. We term the first future pass, C1 as the candidate pass.

Let the index width between pass Ci and pass Ci+1, measured along the
indexing curve, be denoted by wi. For m known passes, we define the ordered
collection of known index widths as K = {w

−m+1, w−m+2, ..., w−1}. Similarly,
the ordered collection of potential index widths for the n unknown future
passes is defined as U = {w0, w1, ..., wn−1}.

We are interested in generating the candidate pass, or equivalently deter-
mine the index width w0 between the current pass and the candidate pass,
such that the resultant paint deposition on the optimization profile is accept-
ably uniform. For the size of a typical deposition pattern of an ESRB atom-
izer, the paint deposition uniformity on the optimization profile is a function
of the index widths of subsequently generated future passes, in addition to
index widths of known passes.

We require that each potential index width belongs to index width search
range SR as defined in Section 4.1. The ordered collection W ≡ {K,U}
denotes index widths between all passes, known and future (unknown). For

Valid

Index Width

Range

 Known Passes

Current

Pass
Candidate

 Pass

Future

 Passes

Profile for

Optimization Indexing Curve

Offset Direction

Fig. 6. Index width optimization on extruded sheets: the paint deposition unifor-
mity is calculated along the indexing curve bounded between the previous pass and
the candidate pass.
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a given collection W of index widths between all passes, we evaluate the
normalized standard deviation, u(W), of the paint deposition on the segment
of the indexing curve bounded between pass C

−1 and the candidate pass C1.
We term this segment of the indexing curve bounded between passes C1 and
C
−1 the optimization profile.

Our brute force approach varies the positions of the candidate and subse-
quently generated passes by using various collections of elements taken from
SR to compute U . For each resultant collection of index widths W, we eval-
uate the uniformity u(W) over the optimization profile. We define the set of
feasible candidate index widths, F , as

F = {w
′

0 : ∃W = {w
−m+1, ..., w0, ..., wn−1}, w

′

0 = w0, u(W) ≤ umax}, (3)

where umax is the maximum allowed normalized standard deviation. An index
width in the feasible index set yields acceptable uniformity of paint deposition
on the optimization profile for some set of future passes. In our implementa-
tion, for each value w0 ∈ SR, we vary the positions of future passes to find
a set that yields acceptable uniformity on optimization profile. If such a set
is found, we mark the index width w0 as feasible. On the other hand, if the
paint deposition uniformity over the optimization profile is not acceptable for
any possible sets of future passes, the index width w0 is marked as infeasible.

After the feasible index width set F is determined, we establish a cost
function for each index width in the feasible set, as in the planar case. Here,
the cost function not only penalizes the smaller index widths, but also the
difference between the current index width and the previous index width (i.e.,
w0 − w

−1). This additional cost component ensures an appropriate balance
between the deposition on the region between the current pass and the previ-
ous pass, and the deposition on the region between the candidate pass and the
candidate pass. Then, the feasible index width that yields the minimal cost
is chosen as the optimum index width, and accordingly the new candidate
offset pass is generated.

4.3 Determining Index Widths on Surfaces with Non-zero
Curvature

On surfaces with non-zero Gaussian curvature, the curvature of the surface, in
general, changes not only as we move along an indexing curve (as in extruded
surface case), but also as we move along a given pass. As such, the geometry
of the indexing curve changes as we move along a given pass. Here, in order to
determine the offset of the current pass, we sample the current pass at a finite
number of “marker” points spaced at intervals based on the total curvature
of the pass. At each marker point, we then determine the indexing curve as
the intersection curve of a plane that is orthogonal to both the surface and
the tangent to the pass at that marker point. We determine the optimum
index width along each indexing curve and obtain the corresponding offset
marker point by tracing along the indexing curve a distance equal to the
optimum index width from the current marker point. The offset curve is then
determined by interpolating between the collection of offset marker points.

To determine the optimum index width at each marker point, we first
approximate the surface locally with a surface of extrusion generated by
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Fig. 7. Index width optimization on arbitrary surfaces: (a) at each of marker point
A, B, C, D, and E, we approximate the surface with an extruded surface using the
indexing curve, and determine the uniformity graph along the indexing curve. (b)
The optimization procedure determines the optimum index width at each marker
point. A1, B1, C1, D1 and E1 are the corresponding offsets of the marker points.

extruding the indexing curve along the direction tangent to the pass at the
marker point (see Fig. 7(a)). Employing the same approach used for the
extruded sheets, we then determine the set of feasible index widths F i at
each marker point i. For l marker points, we construct index sets formed by
a combination operation by picking a single element from each F i at a time.
That is, an index set is represented as I = {w1, w2, ..., wl}, where wi ∈ F i.
Note that each index set, formed by choosing a different combination of
elements from each F i, represents a different offset curve.

For each index set, we assign a cost that penalizes smaller index widths in
the set, change in the index width from previous passes to current passes, as
well as the variation of index width along the current pass. The last compo-
nent of the cost function, in some sense, attempts to minimize the geodesic
curvature of the offset curve.

Selecting the weights for the cost function components that produce sat-
isfactory results for a general class of surfaces depends on the relationships
between the costs for non-uniformity, cycle time and computational time; and
sometimes this choice may not be readily apparent. In our implementation,
we were principally motivated to reduce the occurrence of the zig-zag struc-
ture on the offset passes that not only renders the motion of the real-world
end-effector impractical but may also lead to self-intersections of subsequent
offset curves. An obvious way to achieve this goal is to assign heavy penalties
for variation in the index width along the current pass. However, for simplic-
ity in our implementation, we used a hard constraint that the index widths
at all marker points should be equal. In other words, we consider only those
offset passes which maintain a constant spacing from the current pass at all
marker points.

This restriction of optimizing over only those index sets whose elements
have equal values helps us to: 1) select the cost function with relative ease,
2) comply with the “constant index” offset assumption in selecting the start
curve as discussed in Section 2.3, and 3) reduce the computational cost for
index width selection for l marker points and index resolution wres from
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Fig. 8. (a) Simple surface approximation to the Ford Excursion door and the resul-
tant paint deposition on the surface. The colormap shown is specifically designed to
bring out the paint deposition variation. (b) A typical optimized speed profile along
a spray gun pass. (c) Once the path on the approximation surface is generated, we
simulate the paint deposition on the CAD model of a Ford Excursion door.
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, where n (the number of future passes con-

sidered) is typically 4. We then select the optimum index set that minimizes
the other two components of cost function from all possible constant-index
sets (see Fig. 7(b)) and accordingly generate the candidate pass.

Note that although this “constant index” set solution that may not be
globally optimal, it enables us to solve the index width selection problem
satisfactorily within a practical amount of time. Moreover, the constant in-
dex set solution can serve as the starting point for a gradient-descent based
method that considers all index sets for further improvement in uniformity.

5 Simulation and Experimental Results

To validate the utility of our coverage procedures, we generate spray gun tra-
jectories using our planning tools on a variety of simple surfaces and study the
effects on the resultant paint deposition uniformity. To evaluate paint depo-
sition uniformity yielded by our generated trajectories, we simulate the paint
deposition process on the corresponding surfaces. We also experimentally de-
termine the paint uniformity on some real automobile surfaces. The surfaces
we consider have varied geometric complexity including planar sheets, cylin-
drical surfaces, a door panel from a Ford Excursion and a fender from a Ford
Crown Victoria. We model each of the two automobile surfaces by a slightly
simplified single C2-continuous NURBS surface, by removing holes and merg-
ing multiple NURBS patches together from the corresponding CAD data. We
then generate paths on the corresponding approximation surfaces, and use
the same paths for experimentally painting the surfaces and for simulating
paint deposition on the surface CAD models (see Fig. 8).

5.1 Speed Optimization Results

To examine the improvement in the resultant paint deposition uniformity
using speed optimized trajectories over constant speed trajectories, we eval-
uate the resultant paint uniformity in each case over a few surfaces and list
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the results in Table 1. We measure the uniformity in terms of normalized
standard deviation of resultant paint deposition. The results show that in
simulation, the speed optimization substantially improves the uniformity of
resultant paint deposition. Also, the planar surface example shows that to
produce similar uniformity, the overspray required by the speed optimized
trajectories is shorter than that required by a constant speed trajectory.

Table 1. Speed optimization results

Surface Simulation Experiment
Const.Speed Optimized Const.Speed Optimized

Excursion door 21.82 % 15.73 % 17.80 % 15.88 %
Approx. to Crown Victoria
fender

16.62 % 11.92 % - -

Plane 100mm overspray 8.60 % 3.88 % - -
Plane 235mm overspray 3.88 % - - -

The experimental data on the Ford Excursion door, however, shows that
the speed optimized trajectory yields only a small improvement in the paint
deposition uniformity over constant speed trajectory. Note that the speed
optimization algorithm inherently relies on simulation of paint deposition to
evaluate the objective function for a given speed profile. If there is a significant
difference between simulated deposition and the experimental deposition, just
as we observed, the effectiveness of speed optimization diminishes for the
real-world application. More realistic deposition models will enable us to
effectively use the speed optimization procedures in real systems.

5.2 Index Width Optimization Results

To study the effect of index width optimization on paint deposition unifor-
mity, we consider a variety of target surfaces, generate passes for each of
them and evaluate the paint deposition uniformity by simulating the paint
deposition process (see Table 2). In each case, we set the maximum allowed
normalized standard deviation at 4% and assume sufficient overspray to min-
imize the boundary effects. We observe that the index optimization yields
the desired uniformity in cases where the surface curvature remains the same
along the indexing curve. On the other hand, if the surface curvature changes
along the indexing curve, the resultant paint deposition uniformity does not
match the desired levels of uniformity. This is the case for Ford Excursion
(horizontal passes) and the Ford Crown Victoria fender. The higher standard
deviations observed on these surfaces are not unexpected because the index
optimization process is, at best, semi-global in nature, and cannot globally
guarantee the desired level of uniformity over the entire surface.

We also studied the effect of index optimization on paint uniformity exper-
imentally by painting the middle and lower portion of a Ford Excursion door.
During the experiments, our planning tools generated the index optimized
path with a sideways overspray pass near the door bottom. In simulation,
this path yielded a paint deposition uniformity of 7.16% on the door. How-
ever, because of robot workspace constraints, we had to manually remove
the bottom overspray pass from the coverage path. For the coverage path
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without the overspray pass, the uniformity of resultant paint deposition was
13.13% in simulation, whereas experimentally it was measured to be 16.5%.
If we had optimized the index width with the constraint that there would
be no bottom overspray pass, the resultant paint deposition uniformity could
be improved to 9.01% in simulation. Thus, our planning tools perform with
limited success when there is no overspray pass. Nonetheless, our procedures
yield desired uniformity results (when sufficient overspray is available) in a
reasonable amount of time, and can offer guidelines to the paint specialists
to substantially reduce the robot programming time.

6 Conclusion and Future Work

In this work, our approach examines the relationship between the variables
and the output characteristics of the uniform coverage problem on simple yet
realistic surfaces, and identifies the underlying key issues. We then decom-
pose the coverage problem into three relatively independent sub-problems,
thus significantly reducing the huge dimensionality of the search space for
the coverage problem. This dimensionality reduction enables us to solve the
coverage problem in a reasonable amount of time without over-trivializing
assumptions about the deposition pattern or the surface geometry. Although
we consider the deposition models only for ESRB atomizers, our coverage
procedure is independent of the deposition model and can be used for any
other type of deposition patterns.

The simulation results show that in presence of a sufficient overspray, the
sub-problems of speed optimization along the passes and the index width
optimization stay relatively independent. In the absence of sufficient over-
spray, deposition constraints in speed optimization problem may affect the
index optimization results adversely, thus warranting a reformulation of the
speed optimization and index width optimization problems. Our future work
will address this reformulation of speed and index optimization subproblems,
and will focus on developing path planning algorithms for broader class of
surfaces, including surfaces with holes.
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Table 2. Index Width Optimization Results
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