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ABSTRACT
Mechanical systems often exhibit physical symmetries in

their configuration variables, allowing for significant reduction
of their mathematical complexity arising from characteristics
such as underactuation and nonlinearity. In this paper, we ex-
ploit the geometric structure of such systems to explore the fol-
lowing motion planning problem: given a desired trajectory in
the workspace, can we explicitly solve for the appropriate inputs
to follow it? We appeal to results on differential flatness from
the nonlinear control literature to develop a general motion plan-
ning formulation for systems with symmetries and constraints,
which also applies to both fully constrained and unconstrained
kinematic systems. We conclude by demonstrating the utility of
our results on several canonical mechanical systems found in the
locomotion literature.

INTRODUCTION
In the analysis of mechanical systems, one often desires to

express the equations of motion in a manner conducive to analy-
sis and control. For a certain class of systems, this motivation
often amounts to reducing the equations by exploiting a sys-
tem’s natural symmetries and the corresponding invariants due
to Noether’s theorem. The configuration variables of such sys-
tems often constitute a principal fiber bundle structure defined by
a Lie group (the non-actuated symmetry directions) and a shape
manifold (the system’s actuated internal configuration). For ex-
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FIGURE 1: TWO-WHEEL DIFFERENTIAL-DRIVE CAR.

ample, the two-wheeled mobile robot shown in Fig. 1 locomotes
on the plane, parameterized by the Lie group SE(2) (position and
orientation of the robot), and has a shape manifold parameterized
by its two wheel angles ψ1 and ψ2.

In recent years, many results have analyzed the properties
and structure of the reduced equations that emerge from such a
splitting. These formulations have been shown to accommodate
nonholonomic constraints as well as locomotion in high and low
Reynolds number fluids. The equations’ structure, and in par-
ticular the kinematic form, has been shown to be conducive to
the analysis of forward motion planning, which has found much
success in periodic inputs known as gaits.

In this paper, we attack the motion planning problem head-
on; instead of deriving gaits to achieve a desired motion, we
are interested in situations for which the inputs can be directly
solved to follow a complete trajectory in the position variables.
This problem bears similar overtones to that of exploiting dif-
ferential flatness in systems theory, a property useful for trajec-
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tory planning for nonlinear dynamical systems. To the authors’
knowledge, commonalities between these systems and those with
reducible geometric structure have been little explored in the lo-
comotion literature, and here we try to clarify some of these links
in the motion planning context.

We structure our paper as follows. We first present an
overview of relevant work in the geometric mechanics and differ-
ential flatness communities. Following this, we present the nec-
essary mathematical tools and summarize relevant results from
prior work. In the next section, we explicitly state the motion
planning problem and present the general solution for mixed
nonholonomic systems followed by the special cases of princi-
pally kinematic and purely mechanical systems. We finish by
considering the specific case of systems on SE(2) and applying
our technique to several examples from the literature.

PRIOR WORK
Much of the early work in the geometric mechanics of loco-

motion characterized systems with bundle structures, and in par-
ticular those with symmetries and constraints. Kelly and Mur-
ray [1] approached locomotion as a consequence of geometric
phase due to gaits on a manifold and also discussed the issue
of controllability. Bloch et al. [2] considered systems subject to
both symmetries and nonholonomic constraints, detailing their
effects on the corresponding momentum laws. Ostrowski [3] ex-
plicitly presented the derivations of the reduced equations and
categorized systems as either kinematic or mixed (dynamic).

The notion of a connection that determines the position out-
puts of a system in response to shape inputs lends itself to gait
analysis for motion planning, as shown in earlier work by Os-
trowski et al. for the snakeboard [4] and later extended to opti-
mal gait search [5]. Mukherjee and Anderson [6, 7] were able
to perform integration of the connection using Stokes’ theorem
to develop gaits for the rolling disk, and Melli et al. [8] did so
for a three-link swimmer. Shammas et al. [9, 10] exploited the
structure of the connection and developed the use of height func-
tions to systematically evaluate the efficacy of gaits in the shape
space. This work was extended by Hatton and Choset [11] to
extract more accurate evaluations via coordinate optimization.

Given an input trajectory, the analysis of gaits can yield in-
formation on a system’s possible output motions and trajectories.
But it may be difficult to solve the reverse problem of deriving an
input from an arbitrary output, addressed as a result of the differ-
ential flatness property of control systems. The theory of differ-
ential flatness was introduced by Fliess et al. [12] and Martin et
al. [13]; Murray et al. [14] enumerated a canonical catalog of dif-
ferentially flat systems. Examples of analytical trajectory gener-
ation were shown for trailer systems [15] and towed cables [16],
among others. Finally, application of nonlinear control to me-
chanical systems was explored by Murray [17] and Bloch [18],
including some discussion on trajectory generation.

MATHEMATICAL BACKGROUND
In this section we provide a brief summary of relevant devel-

opments from Lagrangian mechanics and geometric reduction.
Once we have established the scope of the systems analyzed in
this paper, we bring in the necessary concepts from dynamical
systems and differential flatness, allowing us to explicitly detail
the link between the two perspectives. More complete references
for the first subject can be found in [1–4,9,10]; the second is dis-
cussed more extensively in [12–14, 19].

Lagrangian Mechanics
A mechanical system can be described by n configuration

coordinates q ∈ Q. We can also associate with any system a
Lagrangian L : T Q→ R, defined as the difference between the
system’s kinetic and potential energy. It can be written as

L(q, q̇) =
1
2

q̇T M(q)q̇−V (q), (1)

where M(q) is the mass matrix and V (q) is the potential energy.
A system can also be subject to a set of k linearly indepen-

dent nonholonomic constraints. As in previous literature, we as-
sume that such constraints can be written in Pfaffian form as

ω(q)q̇ = 0. (2)

Here ω(q) is a full row rank k by n matrix function of q; the
constraint equations are linear in the velocities q̇.

From this information, one can then generate the Euler-
Lagrange equations of motion:

d
dt

(
∂L(q, q̇)

∂ q̇i

)
− ∂L(q, q̇)

∂qi
+

k

∑
j=1

λ jω ji(q) = τi, i = 1, . . . ,n.

(3)
Here we introduce k Lagrange multipliers λ to incorporate the
constraint distribution. We assume second-order torque inputs to
the system τi, but presently make no requirement that the system
be fully actuated. These equations can then be rewritten explic-
itly as the Newton-Euler equations as

M(q)q̈+C(q, q̇)q̇+N(q, q̇) = τ. (4)

The Coriolis matrix C(q, q̇) contains the Coriolis and centrifugal
contributions, while N(q, q̇) includes all external forces, conser-
vative and non-conservative.

Geometric Reduction
The configuration manifold Q of many mechanical systems

can be expressed in a principal fiber bundle structure whereby a
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certain subset of the variables collectively represents an element
of a Lie group G. For a physical system, these fiber variables
often specify an element of SE(3)—or some subgroup thereof—
that encodes the system’s position and orientation relative to a
laboratory frame of reference. The system’s internal configu-
ration is described by the remaining coordinates that specify a
point on a shape or base manifold M, allowing for a decompo-
sition of the form Q = G×M. Recall that Q has dimension n,
and we now assume we have m actuated shape variables and l
unactuated fiber variables, so that n = l +m.

We are now in a position to exploit the natural symmetries
of the system to reduce the equations of motion to a more man-
ageable form. We assume that the systems of interest have La-
grangians and constraints that are invariant under translation in
the group variables g ∈ G; in other words, neither L(q, q̇) nor
ω(q) has explicit dependences on inertial position and orienta-
tion. Hence we can equivalently specify these functions at g = e,
the identity element of the group, by defining

ξ = (TeLg)
−1ġ, (5)

where TeLg : TeG→ TgG and ξ ∈ TeG is an element of the tangent
space of e. More specifically, the elements ξ form the Lie algebra
g associated with G, and they correspond to velocities written in
a body-fixed frame.

We can define the reduced Lagrangian in terms of the shape
variables r ∈M and the configuration velocities q̇ = (ξ , ṙ) as

l(r,ξ , ṙ) =
1
2
(
ξ T ṙT )T M̂(r)

(
ξ

ṙ

)
−V (r), (6)

where the reduced mass matrix M̂(r) can be subdivided into the
following components as follows:

M̂(r) =
(

I(r) I(r)A(r)
AT (r)IT (r) m(r)

)
. (7)

I(r) and A(r) are the local forms of the locked inertia tensor and
mechanical connection, respectively. Note that all components
are functions of the shape variables only. We can perform a sim-
ilar reduction and decomposition of the constraints (2), which
become

ω̃ξ (r)ξ + ω̃r(r)ṙ = 0. (8)

Reduced Equations of Motion
To proceed in deriving the reduced equations of motion, we

introduce the generalized nonholonomic momentum as the pro-
jection of ∂ l

∂ξ
onto the null space of ω̃ξ , which encompasses the

FIGURE 2: MAPPING BETWEEN BASE VELOCITIES AND
FIBER VELOCITIES VIA THE CONNECTION FORM.

allowable directions of motion. Denoting this by Ω(r), we have

p =

〈
∂ l
∂ξ

;Ω

〉
= Ω

T (Iξ + IAṙ) := ηξ (r)ξ +ηr(r)ṙ. (9)

Hence p is a linear function in the configuration velocities, with
coefficient matrices ηξ (r) and ηr(r). For a system with k linearly
independent constraints, p has dimension l− k.

Rewriting Eqn. (9) along with the reduced constraint equa-
tions (8), we can stack them together to find the following recon-
struction equation for ξ :

ξ =−
(

ω̃ξ

ηξ

)−1(
ω̃r
ηr

)
ṙ+
(

ω̃ξ

ηξ

)−1(0
p

)
:=−A(r)ṙ+Γ(r)p.

(10)
Here A : TrM→ g is the local form of the mixed nonholonomic
connection, which relates changes in shape to changes in posi-
tion. This relationship is shown graphically in Fig. 2, where a
trajectory in M is mapped into a trajectory through the fibers cor-
responding to each traversed base configuration. The l× (l− k)
matrix Γ(r) is defined to be the rightmost l− k columns of the
matrix inverse on the left side. It is shown in [10] that this in-
verse indeed always exists.

The equation governing the evolution of p can be derived
by differentiating the leftmost side of (9) and substituting into
the Euler-Lagrange equations (3). The derivation is somewhat
lengthy and is done in detail in [4, 10]. We state the result here,
noting that it is quadratic in ṙ and p:

ṗc = ṙT
σrr,c(r)ṙ+ ṙT

σrp,c(r)p+ pT
σpp,c(r)p. (11)

Each of the σ matrices above is a matrix-valued function of r, de-
rived from components of the reduced mass matrix, constraints,
and reconstruction equation. We index Eqn. (11) above with c
to indicate that there are l− k evolution equations, one for each
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component of p. These equations can also be stacked together
to form one system of differential equations, with the σ matrices
becoming third-order tensors.

Finally, the dynamics of the shape variables can be written
in the second-order Newton-Euler form as in Eqn. (4). It can be
shown that they constitute m equations of the form

M̃(r)r̈+C̃(r, ṙ)ṙ+ Ñ(r, ṙ, p) = τr, (12)

such that neither the mass matrix nor the Coriolis matrix depends
on p. Taken together, Eqns. (10), (11), and (12) constitute the
reduced dynamic equations of motion.

Note that if k = m, the constraints fully span the fiber space
and Ω becomes trivial. Then the momentum p vanishes and we
have a principal kinematic connection derived solely from con-
straints:

ξ =−ω̃
−1
ξ

(r)ω̃r(r)ṙ :=−Akin(r)ṙ. (13)

A similar derivation occurs if there are no constraints and the ini-
tial momentum of the system is 0. In that case the reconstruction
equation becomes purely mechanical:

ξ =−η
−1
ξ

(r)ηr(r)ṙ :=−Amech(r)ṙ, (14)

where we term Amech(r) the mechanical connection. In both
cases we no longer need the momentum evolution equation, leav-
ing us with l first-order equations for the fiber variables and m
second-order equations for the shapes.

Dynamical Systems and Differential Flatness
In the controls literature, one is often concerned with dy-

namical systems of the form

ẋ = f (x,u), (15)

where x makes up the states of the system and u makes up the
control inputs. Such a system is said to be differentially flat if
there exist outputs y, with the same dimension as u, of the form
y = y(x,u, u̇, ü, · · · ,u(R)) such that the states and inputs can be
expressed as functions of finite derivatives of the outputs, i.e.,

x = x(y, ẏ, ÿ, · · · ,y(S)), (16)

u = u(y, ẏ, ÿ, · · · ,y(S)). (17)

Here R and S must be finite integers. If such flat outputs exist
for a system, then desired trajectories in the output space can be
mapped directly to the inputs that produce them.

A more general concept, known as partial differential flat-
ness, was introduced in [19]. For a system to possess this prop-
erty, it is sufficient for a subset of the states and all the inputs to
satisfy Eqns. (16) and (17). The dynamics of the non-flat states
xnf must be expressible as chains of integrators such that their
trajectories can be found by integrating through functions of the
flat outputs and their derivatives, i.e.,

x(M)
nf,i = hi(y, ẏ, · · · ,y(N)). (18)

As before, M and N must be finite integers. Thus, even though it
may not be possible to analytically find all the states of partially
flat systems, one can still do so numerically by integration.

For the purposes of defining a similar concept for systems on
principal bundles, we note that the reduced equations can also be
written in state space form. If we define our states as the 2n− k
variables x = (g, p,r, ṙ)T and the inputs as u = τr, then

ẋ =


TeLg(−A(r)ṙ+Γ(r)p)

ṙT σrr(r)ṙ+ ṙT σrp(r)p+ pT σpp(r)p
ṙ

−M̃−1(r)(C̃(r, ṙ)ṙ+ Ñ(r, ṙ, p))

+


0
0
0

M̃−1(r)

τr.

(19)
Again, for kinematic systems we can eliminate p from the state,
leaving l +2m equations.

MOTION PLANNING: THE GENERAL CASE
For the general motion planning solution to the system (19),

we would like to solve for the inputs τr given a desired trajec-
tory in the workspace. While we cannot establish any differen-
tial flatness properties without looking at special cases, such as
one described in the next section, we can still use similar ideas to
guide the general solution. We will restrict ourselves to systems
with an equal number of shape and fiber variables, i.e. m = l.
The “outputs” that we would like to be able to command are the
fiber variables g. If we are given g, then we can obtain ġ by dif-
ferentiation, and we can freely transform into ξ and back using
Eqn. (5). Hence we would like to show that there is a way to
solve for τr using this information only.

Lemma 1. Suppose that ξ (t), differentiable, is given and that
both ξ (t) and r(t) have dimension l. If the system is subject to
k nonholonomic constraints, then r(t) must satisfy l− k second-
order differential equations of the form

ρ1(r)r̈+ ṙT
ρ2(r)ṙ+ ṙT

ρ3(r)ξ +ρ4(r,ξ , ξ̇ ) = 0. (20)

Proof. We first differentiate the RHS of Eqn. (9) to obtain a sys-
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tem of l− k differential equations. The cth equation is

ṗc = ηr,c(r)r̈+ ṙT ∂ηr,c(r)
∂ r

ṙ+ ṙT ∂ηξ ,c(r)
∂ r

ξ +ηξ ,c(r)ξ̇ , (21)

where η(·),c refers to the cth row of the respective matrix and
∂η(·),c(r)/∂ r is the Jacobian matrix of the cth row of η(·).

In addition, we can substitute Eqn. (9) into Eqn. (11) to ob-
tain a first-order equation for ṗc in terms of ξ , r and ṙ only, shown
below with the functional form (r) dropped for conciseness:

ṗc = ṙT (σrr +σrpηr +η
T
r σppηr)ṙ+ξ

T
η

T
ξ

σppηξ ξ

+ ṙT (σrpηξ +η
T
r (σpp +σ

T
pp)ηξ )ξ . (22)

Now equating the above two expressions for ṗc, we obtain
Eqn. (20), where the cth row of each coefficient matrix is given
by the following expressions, all functions of r.

ρ1 = ηr,c,

ρ2 =
∂ηr,c

∂ r
−σrr− (σrp +η

T
r σpp)ηr,

ρ3 =
∂ηξ ,c

∂ r
− (σrp +η

T
r (σpp +σ

T
pp))ηξ ,

ρ4 = ηξ ,cξ̇ −ξ
T

η
T
ξ

σppηξ ξ . (23)

Note that while the expressions in (23) are matrices of varying
sizes, Eqn. (20) is a scalar equation when everything is multiplied
out. Hence each of the l−k equations can be stacked together to
obtain one system of differential equations.

Proposition 1. Suppose that ξ (t), differentiable, is given and
that both ξ (t) and r(t) have the same dimesionality. Suppose
also that zero- and first-order initial conditions for r(t) are given.
Then there exists a unique set of inputs τr(t) such that the system
follows the trajectory ξ (t).

Proof. Starting with Lemma 1, we can obtain a set of l−k equa-
tions in the form of (20). From the nonholonomic constraints
(8), we have k further equations, linearly independent from those
of (20). Hence we have a total of l differential equations in m
unknowns. Since m = l and we have the appropriate initial con-
ditions for r(t), we can numerically solve the equations for r(t).

The shape dynamics are given in Eqn. (12), which gives τr
as a function of r, ṙ and p. Since we now know r(t) and ξ (t) as
functions of time, we can find τr as follows:

τr = M̃(r)r̈+C̃(r, ṙ)ṙ+ Ñ(r, ṙ,ηξ (r)ξ +ηr(r)ṙ). (24)

This illustrates our proposed method for motion planning.

Discussion
The problem of solving for the input torques, given desired

workspace trajectories, now comes down to solving for the shape
variables, which can be done by solving the differential equa-
tions (8) and (20). In this method, we assumed that we have the
same number of equations as unknowns, along with appropriate
initial conditions for r(t). We now briefly discuss some issues
concerning the solutions for the shape variables, such as exis-
tence, uniqueness, and boundedness. We will also touch upon
some possible simplifications to Eqn. (20), as well as the modifi-
cations necessary to accommodate non-fully actuated systems.

Characterization of Equations. Since the compo-
nents of Eqs. (8) and (20) are derived from the system mass
matrix and constraints, the nature of the solution of these equa-
tions depends on the system parameters. In particular, conditions
like Lipschitz continuity [20], which is required of any general
differential-algebraic system, carry over to Proposition 1 as well.
As long as the provided ξ (t) is also Lipschitz-continuous, a local
unique solution can always be found numerically.

Unfortunately, there is currently no provision for the exis-
tence of a global solution to (8) and (20) in the general case. For
example, it is shown in [21] that the required torque inputs to
steer the snakeboard at a constant velocity grows without bound
as the system approaches the singular configuration. While we
cannot realistically use such solutions, we can still exploit the
equations’ structure to gain insight into the output limits of the
system, as we will show in an example in the following section.

One advantage of working in this framework is that it is pos-
sible to establish conditions for when r(t) can be solved explic-
itly without integration. Suppose that each of the equations turns
out to be decoupled in the shape variables r. This may happen
if the system states are physically decoupled from one another,
if the system coordinates are defined such that each constraint is
a function of one coordinate, or if the constraints pre-determine
a subset of the solution independently of (20). If some of these
conditions hold, the (partial) flatness of a system can be deter-
mined through the functional forms of these equations. Exam-
ples of special cases include ξ being constant (no dependence on
t) or the symmetry directions being Abelian (σpp = 0) [4].

Another major simplification occurs when a system is kine-
matic, in which case the momentum p vanishes and the fibers of
the system evolve according to either Eqn. (13) or (14). In this
case, we only need to solve the first-order kinematic reconstruc-
tion equation for r(t) given ξ (t), and then propagate the shape
dynamics through Eqn. (24). Assuming we have full actuation,
the differential equation has the form

ṙ(t) =−A(r(t))−1
ξ (t), (25)

which can be solved by either quadrature or numerical integra-
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tion. The usage of connection vector fields in conjunction with
Stokes’ theorem by Hatton and Choset [11] was applied to the
goal of maximizing displacement in specific fiber directions.

Overactuated and Underactuated Systems. The
technique described here cannot be directly applied to systems
that are either over- or underactuated, relative to the number of
fiber variables. In the former case we do not have enough equa-
tions and l < m; in the latter case we have too many equations
and l > m. Both cases have been studied extensively for different
motion planning techniques in the literature; here, we will simply
look at kinematic systems.

For non-fully actuated kinematic systems, the local connec-
tion form is not bijective and the inverse does not exist. A simple
solution is to use the left pseudoinverse, reminiscent of a similar
technique for the Jacobians of redundant manipulators [22–24]:

ṙ(t) =−A(r(t))+ξ (t). (26)

For overactuated systems, the solution will typically mini-
mize the magnitudes of the shape variables. It is possible to opti-
mize for more sophisticated criteria, for example by propagating
the shape dynamics to find optimal torques; for general systems,
this technique is addressed by control allocation [25, 26].

For underactuated systems, the solution will minimize the
residual difference between the resultant fiber velocities ξ̂ (t) and
the desired ξ (t); exact solutions are typically not possible, be-
cause the system’s possible set of trajectories does not span the
entire fiber space. Alternatively, one can specify a subset of de-
sired fiber velocities; Eqs. (8) and (20) will then give the restric-
tions on the remaining ones. We will show an example of this in
the next section.

MOTION PLANNING ON SE(2)
In this section we focus exclusively on systems on SE(2),

the group of planar rigid motions. The motivation for this par-
ticular class of systems is twofold: first, SE(2) covers a large
range of mechanical systems, many of which are wheeled mobile
robots (WMRs); second, trajectories in SE(2) have an intuitive
correspondence to the system body velocities ξ , allowing us to
show explicit examples of our motion planning techniques.

SE(2) can be parameterized by the three coordinates g =
(x,y,θ), where x and y denote the global position of the system
and θ denotes its orientation. The transformation between body
velocities ξ and world velocities ġ is given by

ξ =

ξx
ξy
ξθ

=

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 ẋ
ẏ
θ̇

 . (27)

Trajectories and Body Velocities
Given a desired trajectory c(t) = (x(t),y(t),θ(t)), one can

clearly find the equivalent body velocities by differentiation of
c(t) and substitution into (27). If we apply the restriction that
tanθ = ẏ/ẋ, we show that ξ can be further written as explicit
expressions of curvature and forward velocity. This requires that
the robot is always oriented along its direction of motion, a rea-
sonable assumption in many planning problems.

Given our constraint on θ , we can compute the following:

cosθ =
ẋ
v
, sinθ =

ẏ
v
, θ̇ =

ẋÿ− ẍẏ
ẋ2 cos2

θ = κv, (28)

where

v =
√

ẋ2 + ẏ2, (29)

κ =
ẋÿ− ẍẏ

(ẋ2 + ẏ2)3/2 . (30)

Here v is the tangential velocity and κ is the curvature of the
desired trajectory. Then it is straightforward to see that

ξ =

ξx
ξy
ξθ

=

 v(t)
0

κ(t)v(t)

 , (31)

where c(t) = (κ(t),v(t)) is an alternative parameterization of the
desired trajectory to be tracked.

This form of trajectory representation affords us several ad-
vantages. It provides a simple relationship between the desired
trajectory and corresponding body velocities, allowing one to
easily find one side of (31) given the other. It reduces the number
of relevant body velocity components to two, equal to the num-
ber of functions describing the trajectory. Finally, it allows us
to characterize the types of trajectories that underactuated sys-
tems can follow, as there is an explicit relationship between the
forward velocity ξx and turning rate ξθ .

Examples
Two-wheeled mobile robot. To illustrate the utility of

working with the reduced equations of motion, we first look at
the mobile robot in Fig. 1 detailed by Kelly and Murray [1]. It
has two nonholonomically constrained wheels and a front caster
for support, along with a wheel radius ρ and body half-width
w. The system’s shape manifold is parameterized by the two
wheel angles r = (ψ1,ψ2)

T . We assume the wheel contacts on
the ground to be governed by the pure rolling assumption and that
a body frame is attached to a point equidistant from the wheels,
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FIGURE 3: THREE-LINK KINEMATIC SNAKE ROBOT.

giving rise to three reduced constraints as follows:1 0 0
0 1 0
0 0 1

ξ − ρ

2

 1 1
0 0

w−1 −w−1

 ṙ = 0. (32)

This system is principally kinematic, since the number of
constraints is equal to the dimension of the group. The kinematic
connection is trivially given as Akin = ω̃r, since ω̃ξ is simply the
identity mapping. From Eqn. (26), the shape variables can be
solved according to the following differential equations:

ṙ(t) =
1
ρ

(
1 w
1 −w

)(
v(t)

κ(t)v(t)

)
. (33)

From this we can conclude that this system is partially dif-
ferentially flat. Taking the flat outputs to be inertial coordinates
x and y, we can find θ , κ , and v according to Eqns. (29) and
(30), which then give us ṙ according to the above equation. It
is shown in [1] that the shape dynamics take the form M̃r̈ = τr,
independent of r, allowing us to solve for the inputs τr without
integration. The remaining, non-flat states are the shape variables
r, which can be found by integrating Eqn. (33) above once.

Kinematic snake. The kinematic snake, detailed by
Shammas et al. [9] and shown in Fig. 3, is a three-link robot
with nonholonomically constrained wheels on each of its links;
locomotion is achieved by actuating the two joints between the
links. We assume that the links have lengths R1, R2, and H1 +H2
as shown, and that the shape manifold is parameterized by the
two joint angles r = (φ1,φ2)

T . As with the two-wheeled car,
there are exactly three constraints, making the system principally
kinematic. Each of them is of the form

−ẋi sinθi + ẏi cosθi = 0, (34)

where xi, yi, and θi are the global coordinates of the ith wheelset.
x2 and y2 coincide with the body frame, so the constraints in
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FIGURE 4: (a) DESIRED WORKSPACE TRAJECTORY AND
(b) CORRESPONDING JOINT INPUT ANGLES.

reduced form can be written as sinφ1 cosφ1 H1 cosφ1 +R1
0 1 0

−sinφ2 cosφ2 −H2 cosφ2−R2

ξ −

R1 0
0 0
0 R2

 ṙ = 0. (35)

Unlike the previous example, the kinematic connection here
Akin depends on the shape variables r, as ω̃ξ is not constant. Fur-
thermore, it is not possible to solve the differential equations an-
alytically for any arbitrary ξ . (We do note that if curvature is
constant, we will have that ξx = v(t) ∝ ξθ , which may allow for
an explicit solution by quadrature for φ1 and φ2 separately, since
the equations are decoupled.) Instead, we rewrite the constraints
into the form (26) as shown below to perform numerical integra-
tion, after which the shape trajectories can be pushed through the
dynamics to obtain the input torques:

ṙ(t) =

(
1

R1
sinφ1

H1
R1

cosφ1 +1
− 1

R2
sinφ2 −H2

R2
cosφ2−1

)(
v(t)

κ(t)v(t)

)
. (36)

For the following simulation, we assume link lengths with
R1 = R2 = 1 and H1 = H2 = 2. We choose Hi > Ri to allow the
outer links to swing around toward the middle link if necessary—
we do not assume any joint limits. Suppose we want to follow the
relatively complex workspace trajectory shown in Fig. 4a. This
may be provided by a high-level planner with the goal of avoid-
ing obstacles or hitting checkpoints, for example. From this we
can find the velocity and curvature parameterization according to
Eqns. (29) and (30), and we can then solve Eqn. (36) to obtain
the shape trajectories shown in Fig. 4b.

Note that the solution for φ1(t), the joint at the front link, re-
quires the joint to operate around π radians most of the time. This
corresponds to swinging the front link around to coincide with
the middle link (this can be physically accomplished if the links
are at different heights off the ground) and oscillating around
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FIGURE 5: THE SNAKEBOARD.

that configuration. In addition, neither of the joints is required
to follow a periodic gait function. While we forego the geomet-
ric intuition afforded by height functions and connection vector
fields, this direct method easily allows the robot to follow much
more diverse trajectories than with previous techniques.

Snakeboard. Shown in Fig. 5, the snakeboard is an ex-
ample of a mixed nonholonomic system that requires the use of
Eqn. (23) to apply our motion planning formulation. This was
the basis for the analysis done by Dear et al. [21]; here, we for-
mulate it explicitly in terms of Proposition 1 and show that it is
in fact a partially differentially flat system.

The snakeboard has mass M, length 2L, and moment of in-
ertia J; the rotor and wheelsets have inertias Jr and Jw, respec-
tively, and we assume ML2 = J + Jr + 2Jw. The system is actu-
ated by two inputs, spinning the rotor at the center or rotating the
wheelsets axles. These shape angles are denoted r = (ψ,φ); the
wheel angles are locked to each other so that φ = φ f =−φb. The
wheelsets give rise to two nonholonomic constraints, one fewer
than the dimension of the fiber. With a body frame attached at
the rotor, the reduced constraints take the form

(
−sinφ cosφ Lcosφ

sinφ cosφ −Lcosφ

)
ξ = 0. (37)

Because these constraints can be subtracted to form a single al-
gebraic equation in φ with no φ̇ or ψ terms, we can immediately
solve them to obtain φ(t) = tan−1(Lξθ/ξx). The fact that we are
able to do this will be crucial in the next step.

As the number of constraints is fewer than the dimension of
the fiber, we require the Lagrangian to account for the remaining
symmetries not annihilated by the constraints.

l(ξ , ṙ) =
1
2

M(ξ 2
x +ξ

2
y +L2

ξ
2
θ )+

1
2

Jrψ̇
2 + Jrξθ ψ̇ + Jwφ̇

2. (38)

The derivation of the nonholonomic momentum and its evolution
equation is detailed in [21]. We restate the results here and make

FIGURE 6: THE CHAPLYGIN BEANIE.

explicit the components of Eqns. (9) and (11):

p =
(
ML 0 ML2 tanφ

)
ξ +

(
Jr tanφ 0

)
ṙ, (39)

ṗ = ṙT
(

0 Jr/2
Jr/2 0

)
ṙ+ ṙT

(
0

tanφ

)
p. (40)

Now substituting each of these components into Eqn. (23),
we obtain the differential equation

Jr tanφψ̈ + ṙT
(

0 −Jr/2
Jr/2 0

)
ṙ+ ṙT

(
0 0 0

−ML tanφ 0 ML2

)
ξ

+
(
ML 0 ML2 tanφ

)
ξ̇ = 0. (41)

This is a second-order differential equation in ψ , which also con-
tains terms in φ and φ̇ . However, we already have an explicit
solution for φ , and if we substitute this into Eqn. (41) along with
the curvature parameterization of the fiber trajectory, we obtain

Jrκ(t)ψ̈ +Mv̇(t)+ML2
κ(t)

d
dt
(κ(t)v(t)) = 0, (42)

which is exactly the same equation used to solve for the rotor
velocity ψ̇ in [21].

Now taking this analysis one step further by finding the input
torques, we can find the reduced shape dynamics by applying the
Euler-Lagrange equations to Eqn. (38), with τr = (τψ ,τφ )

T .

τ =

(
Jr 0
0 2Jw

)
r̈+ Jrξ̇θ . (43)

Because the shape dynamics only require r̈, we can find the
torque inputs without any integration—we get ψ̈ from Eqn. (42)
and we can differentiate φ twice to obtain φ̈ . The snakeboard is
therefore partially differentially flat. We are able to obtain φ and
the input torques analytically provided the desired fiber outputs,
while ψ̇ and ψ can be found by simple integration of Eqn. (42),
a known function of the desired outputs.
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Chaplygin beanie. Our last example is the Chaplygin
beanie, shown in Fig. 6 and introduced by Kelly et al. [27]. It
is a mixed nonholonomic system with only one constraint on its
back wheel; furthermore, it is severely underactuated with only
one rotor input above its main platform. Despite these features,
a simple method based on proportional control was presented in
[27] to simultaneously propel and steer the system, though not
independently. Due to underactuation, the beanie cannot follow
any arbitrary fiber trajectory, but here we will be able to use our
analysis to qualify feasible trajectories.

As done previously, we will derive the necessary equations
using the reduced formulation. The one-dimensional shape man-
ifold is parameterized by the rotor angle r = φ , and the system
has mass m and inertias B and C as shown; we will also denote
the total inertia J = ma2 +B+C. With the body frame attached
to the center of the rotor, the constraint is simply

(
0 1 −a

)
ξ = 0. (44)

Note that this gives us no information about φ , as the constraint
acting on the system is completely decoupled from the rotor an-
gle. We also require the Lagrangian to derive the momenta:

l(ξ , ṙ) =
1
2

m(ξ 2
x +ξ

2
y )+

1
2

Cξ
2
θ +

1
2

B(ξθ + φ̇)2. (45)

The constraint is one-dimensional, which leaves us with a
two-dimensional null space and hence two independent nonholo-
nomic momenta. Their derivation can be found in [27]; here, we
will rewrite the equations in reduced form, relabeling JLT as p1
and JRW as p2 and denoting p = (p1, p2)

T .

p =

(
m 0 0
0 ma B+C

)
ξ +

(
0
B

)
ṙ, (46)

ṗ1 =
maB2

J2 ṙ2 + ṙ
(
0 −2maB

J2

)
p+ pT

(
0 0
0 ma

J2

)
p, (47)

ṗ2 = ṙ
( ab

J 0
)

p+ pT
(

0 − a
2J

− a
2J 0

)
p. (48)

Now substituting the appropriate components from the
above three equations into Eqn. (23), we obtain the following
two differential-algebraic equations:

ξ̇x = aξ
2
θ , (49)

Bφ̈ =−(ma2 +B+C)ξ̇θ −maξxξθ . (50)

Note that only the second of these two equations contains a term
in the rotor acceleration. So given a feasible fiber trajectory, we
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FIGURE 7: (a) DESIRED TRAJECTORY CURVATURE AND
(b) REQUIRED VELOCITY PROFILE.

can solve Eqn. (50) for φ̈ and its integrals. The first equation
gives an explicit condition on trajectory feasibility. In terms of
velocity and curvature, this can be written as

v̇(t) = aκ
2(t)v2(t). (51)

In [27] it was shown that this system’s trajectories evolve in a
non-trivial manner. Eqn. (51) tells us precisely how steering and
propulsion are coupled together. Given a particular path with a
curvature parameterization κ(t), the beanie’s velocity must sat-
isfy this equation, which can be solved as a nonlinear ordinary
differential equation in v(t).

Suppose that we wish to execute the fiber curvature function
shown in Fig. 7a. Solving Eqn. (51) with all parameters set to 1,
we find that the beanie must traverse such a path with a velocity
profile shown in Fig. 7b; both functions agree roughly with the
simulated trajectories in [27]. To derive the actual controller, we
can then simply push the fiber velocities through Eqn. (50) to
find φ̈ and subsequently the corresponding input torque.

CONCLUSIONS AND FUTURE WORK
We have shown a novel approach to motion planning for a

class of locomotion systems by exploiting their inherent fiber
bundle structure and Lie group symmetries. Having provided
desired fiber output trajectories, the required shape input trajec-
tories and input torques can be obtained through a reduced set
of differential equations. This approach has also yielded insight
into how systems can be shown to be (partially) differentially flat.

In future work, further investigation into the structure of
Eqn. (20) may provide more information on the flatness proper-
ties and feasible trajectories of subclasses of systems. We would
also like to combine our formulation with current methods for
non-fully actuated systems, as well as further explore the links
underlying manipulation and locomotion, a potentially rich in-
tersection as shown by the simple utility of Eqn. (26). Finally,
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we hope that this work will provide motivation for further explo-
ration of input solutions beyond periodic gaits in these systems.
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