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INTRODUCTION 

In minimally invasive surgeries (MIS), surgeons have 

limited situational awareness of the surgical 

environment, making navigation a challenging task. 

Registration of preoperative images to intra-operative 

anatomy can help improve the situational awareness of 

the surgeon and validate if the surgery is going as per 

the preoperative plan. In this work, we use prior 

information about stiffness and geometry of the organ to 

develop an implementation for simultaneous registration 

and stiffness mapping.  

While several imaging-based techniques [1], 

[2] and palpation-based techniques [3] have been used 

for registration, these methods tend to perform poorly 

when the organ geometry is rotationally symmetric, as 

in the case of liver, heart, etc. A rotationally symmetric 

object has multiple solutions for rotation and/or 

translation, resulting in an ambiguity in registration [4]. 

In other applications, this ambiguity is usually resolved 

by introducing an additional dimension such as surface 

texture [5], surface reflectance [6], etc. 

In order to develop a formulation for 

registration that works reliably for any organ geometry, 

we extend the formulation of [3] by using a stiffness 

prior in addition to the geometric prior for resolving the 

ambiguity in registration. A prior stiffness map can be 

generated using elastography, physics based simulations 

or other complementary methods. Through experiments 

on a flat silicone organ with embedded stiff inclusions, 

we show that our method accurately estimates the 

registration as well as the stiffness map and outperforms 

the state of the art.   

MATERIALS AND METHODS 

To evaluate our algorithm we have used a custom 

designed Cartesian robot with an open architecture 

controller (see Fig. 1(a)). The robot end-effector is 

equipped with an ATI Nano43 F/T sensor. The end-

effector is controlled using a hybrid motion/force 

controller implemented as in [7].  

For the experiment, we used a silicone 

phantom organ with embedded stiff inclusions as shown 

in Fig. 1(b). A region of interest was chosen on the 

surface of the organ and several points in that region 

were probed. The phantom organ was lubricated to 

reduce the effect of friction during probing.  

The robot was commanded to probe the organ 

up to a set depth along the normal direction and the 

applied force was recorded.  

 
 

Fig. 1. (a) Cartesian robot setup for experiments. (b) Top view 

of the silicone phantom organ with embedded stiff inclusions. 

(c) CAD model of the organ and the stiff inclusions. 

 

The force and position measurements, along with the 

CAD model of the organ and the prior stiffness map, 

were used to estimate the registation and the stiffness 

map of the organ.  

 

Steps involved 

Our formulation takes the following steps: 

0. Prior information gathering:  In this work the 

geometric prior is obtained by generating the CAD 

model of the organ and the inclusions from CT 

scans (see Fig. 1(c)). We generate the prior stiffness 

using a physics based simulation that assumes a 

linear stiffness model. The stiffness values are 

normalized and classified into two discrete levels, 

high and low stiffness, using Otsu method [8].  

1. Collection: In the collection step, we collect sets of 

position-force measurements which correspond to 

probing of the same undeformed point on the 

surface of the organ. For example, (  
    ) 

is a set 

of   measurements collected for the     probed 

point where         and        .   
     are 

the position and force-magnitude measurements. 

2. Stiffness estimation: We estimate the local stiffness 

by assuming a linear stiffness model and computing 

the slope of the best line that describes the variation 

of depth with the applied force.  

3. Correspondence: The correspondence step involves 

finding points on the CAD model that map to the 

location of each of the undeformed points as 



estimated from the sensor measurements. In order 

to ensure that a point corresponding to a high 

stiffness region on the model-frame is mapped to a 

point with high stiffness in the robot’s frame, we 

normalize and classify the estimated stiffness map 

using [8] (Fig. 2(c) was generated from Fig. 2(a)). 

We choose the point on the CAD model that is 

closest and also has the same discrete stiffness level 

in the prior stiffness map.   

4. Minimization: The optimal registration            

can be obtained from the following:  
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Where   
  and    

   are the normal vector and the 

position of the probed point in the model’s 

reference frame and    is the estimated stiffness. In 

this work, Eq. 1 is minimized using a least squares 

solver [4]. 

5. We loop between Step 3 and Step 4 until 

convergence or up to a fixed number of iterations. 

RESULTS 

The stiffness map estimated by our approach is shown 

in Fig. 2(a). Note that the two stiff inclusions are clearly 

visible in the stiffness map. In Fig. 2(d), black-diamond 

markers show the 180 points that were probed in the 

region of interest. Green-square markers show the initial 

guess for the location of the probed points. In Fig. 2(e), 

blue-star markers show the position as estimated by 

CMU [3]. Red-circular markers show the position 

estimated by our approach.  

 
 

Fig. 2. (a) Estimated stiffness map (stiffness in N/mm). (b) 

and (c) Prior stiffness map and estimated stiffness map 

respectively, normalized and stiffness values classified to high 

and low stiffnesss levels. (d) Initial and true location of probed 

points. (e) Estimated location probed points.  
 
Table 1: Comparison of registration results 
…………….. x 

(mm) 

y 

(mm) 

z 

(mm) 

θx 

(deg) 

θy 

(deg) 

θz 

(deg) 

RMS 

(mm) 

Initial 0 0 0 0 0 0 - 

Actual -20 15 -10 11.46 -8.59 5.73 - 

Our approach -21 16.73 -9.1 11.28 -8.6 5.23 2.19 

CMU [3] -16.4 19.9 -14.8 15.45 5.84 8.16 7.74 

ICP[1] -18.9 20.5 -15.4 16.21 7.35 6.5 7.77 

The estimated registration parameters are compared 

with ICP [1] and CMU [3]. Table 1 shows the RMS 

error for each of these methods for a representative 

example. Our approach estimates the registration 

parameters very accurately and the RMS error is within 

clinical requirements [9].  

DISCUSSION 

In this work, we developed a new implementation for 

simultaneous registration and stiffness mapping of an 

organ. In contrast to prior work, we have demonstrated 

successful registration in cases where the organ 

geometry is rotationally symmetric.  

We use a stiffness prior in addition to a 

geometric prior for finding correspondences with the 

model frame and hence resolve the ambiguity in 

registration. By performing experiments on a silicone 

phantom organ we have shown that our approach can 

successfully register while estimating the stiffness map 

and outperform state of the art methods. 

While we have used a simple experimental 

setup and phantom organ, as part of future work we plan 

to demonstrate the method on the da Vinci surgical 

robot probing ex vivo organs.  
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