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Summary. We present a “leap-frog” path designed for a team of three robots per-
forming cooperative localization. Two robots act as stationary measurement beacons
while the third moves in a path that provides informative measurements. After com-
pleting the move, the roles of each robot are switched and the path is repeated.
We demonstrate accurate localization using this path via a coverage experiment in
which three robots successfully cover a 20m x 30m area. We report an approximate
positional drift of 1.1m per robot over a travel distance of 140m. To our knowledge,
this is one of the largest successful GPS-denied coverage experiments to date.

1 Introduction

Localization is critical for the navigational aspect of many robotic applica-
tions. Without accurate positioning, a mobile robot would get lost, wander
away from its target workspace, and fail to complete its intended task. Addi-
tionally, there are many situations where an external positioning system, such
as GPS, is unavailable to the robot, e.g. indoors, within dense vegetation, and
underwater. To solve the localization problem, a team of robots can employ
cooperative localization [1] to incorporate relative sensor measurements into
a Kalman filter framework that estimates the pose of the robots.

It can be shown that the accuracy of such a filter is dependent upon the
path the robots take. This is due to the fact that certain measurements are
more informative than others, depending on the vantage point of the sensor.
We believe a “leap-frog” path, as in [2, 3], is desirable because it temporarily
grounds the increasing uncertainty of the system via stationary robots.

The contribution of this work is the introduction of a new leap-frog path
designed to produce informative measurements for three robots performing
cooperative localization. We also report a 20m x 30m large-scale GPS-denied
coverage experiment with three robots (see Fig.1) that was only possible after
the gain in positioning accuracy provided by this new leap-frog strategy.
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Fig. 1. Three robots used for experimental evaluation of the proposed leap-frog
localization strategy.

2 Related Work

The majority of recent work on cooperative localization ignores the path
planning aspect of this topic and instead focuses on filtering. In [1], Roume-
liotis et. al. define a Kalman filter framework, similar to our formulation in
Sec. 3, that can be used for cooperative localization. In [4], they iterate on
this work and present a distributed method for computing the Kalman filter.
Finally, the work in [5, 6] studies the growth of uncertainty under different
sensing modalities and with a varying number of robots.

Some recent work has addressed path planning and control for robots
performing cooperative localization. Hidaka et. al. [7] present derivations to
show that with any number of robots, the optimal formation for accurate
localization is a “packed circles” configuration. For three robots, they claim
that the optimal formation is an equilateral triangle. Trawny et. al. [8], on
the other hand, perform optimization over possible multi-robot paths and
demonstrate a performance improvement in simulation. Although the opti-
mization is beneficial, we believe this method is susceptible to local minima.

Finally, some research has involved the investigation of leap-frog paths
for cooperative localization. Navarro-Serment et. al. [2] use a group of small
heterogeneous robots (Millibots) for localization and mapping. The authors
use leap-frog paths to help maintain a better estimate over the occupancy
grid map and their EKF localization. Kurazume [3] introduces leap-frog paths
for cooperative localization as well, with a path that is designed to represent
triangle chains of different configurations. Although these paths prove to be
accurate solutions for localization, Kurazume does not analyze these paths
from an information theoretic standpoint.

3 Cooperative Localization

To reduce motion error, a team of robots can employ cooperative localization,
which improves the estimate of the state via relative sensor measurements
between robots. This type of filtering method can be implemented with an
extended Kalman filter, as in [1].
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The state vector for the filter Xk is defined,
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where ui
k is a motion input for the i-th robot, which is composed of a trans-

lational velocity υi
k and a rotational velocity ωi

k.
The measurement equation for our state is a bearing-only measurement,

hi
j(Xk) = arctan

(

yi − yj

xi − xj

)

− θj

which represents the relative bearing angle to the i-th robot as measured by
the j-th robot. A typical sensor that provides bearing measurements in this
form is a monocular camera.

The purpose of the extended Kalman filter (EKF) is to recursively esti-
mate the state mean and covariance matrix with two stages: the prediction
step, which produces the estimated mean and covariance, X̂k+1|k and Pk+1|k

respectively, as well as the measurement update step, which produces an
update to the estimated mean and covariance, X̂k|k and Pk|k respectively.

3.1 Prediction Step

The EKF prediction step is applied when processing the robot’s internal ve-
locities (usually from wheel encoders). The state mean and covariance matrix
are computed as follows.
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where X̂k|k and Pk|k define the estimate from the previous time step, and Fk

and Wk are the Jacobians of the state process equation, as defined below.
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The matrix Uk is a covariance matrix with 2x2 matrices along its diagonal
(all U i

k for 0 ≤ i < N−1 as defined below).

U i
k =

[

α |υi
k| 0

0 β |υi
k| + γ |ωi

k|

]

(1)

Matrix U i
k represents the covariance matrix for the additive white Gaussian

noise that is expected to perturb robot i’s motion input ui
k. Conventional

implementations use a static covariance for this purpose, but we believe a
velocity dependent noise model is more accurate. The model in Eq. 1 accounts
for the fact that wheel slippage is more pronounced at higher speeds and that
zero additive noise should be expected when the robots are stationary.

3.2 Measurement Update Step

To properly incorporate the information provided by the bearing sensors, we
perform a correction to the predicted state estimate,

Hi
j =

∂hi
j(X̂k|k−1)

∂Xk

K = Pk|k−1H
T (HPk|k−1H

T + R)−1

X̂k|k = X̂k|k−1 + K(zk − h(X̂k|k−1))

Pk|k = Pk|k−1 − KHPk|k−1 (2)

where, for M bearing measurements, K is the Kalman gain, H is the mea-
surement Jacobian, and R is an MxM matrix with diagonal elements σ2

z (the
variance associated to a single measurement). The Jacobian H is constructed
by appending together all row vectors Hi

j for each measurement between a
robot i and another robot j. Likewise, h is constructed by appending together
all hi

j to form a column vector. zk is the measurement vector to which h is
associated.

It is important to realize that the effectiveness of this cooperative local-
ization filter is dependent upon the path of the robots. This can be seen
in Eq. 2 where a positive definite matrix KHPk|k−1 is subtracted from the
predicted covariance Pk|k−1. Since H is dependent upon the state estimate

X̂k|k−1, the reduction in uncertainty via subtracting KHPk|k−1 will vary in
amount depending on the configuration of the robots.

4 Leap-Frog Path Design

In Sec. 3, we discuss how the effectiveness of the cooperative localization
filter is dependent upon the path of the robots. This suggests that by careful
path planning, we can achieve better position accuracy during experiments.
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As in [2, 3], we suggest the use of a “leap-frog” path for a team of robots,
where at any given time, a subset of the robots temporarily act as stationary
measurement beacons while the other robots are in motion.

A “leap-frog” path is intuitively beneficial for the Kalman filter because
when robots are stationary, they will not gain any positioning noise, thus
temporarily grounding the normally increasing uncertainty of the system. A
moving robot can move around at will without concern for its added predic-
tion noise because it can easily visit the nearby stationary robots to drive its
position uncertainty down to their level via relative sensor measurements.

4.1 Three-Robot Path Design via Information Gain

The use of three robots for localization is a good fit for bearing-only measure-
ments because the intersection of two bearing rays from two different robots
will triangulate the location of a third robot, albeit with error due to noise.
To investigate path design for a team of three robots, we consider the mea-
surement update equation for the information filter, which is a dual to the
Kalman filter and is commonly used in localization and mapping algorithms,
such as [9]. The measurement update is as follows,

Ik|k = Ik|k−1 + HT R−1H,

where the information matrix Ik|k = P−1
k|k is the inverse of the covariance

matrix. In this work, we define the information gain G(Xk) as a norm of
the positive definite matrix that is added to the information matrix during
a measurement update,

G(Xk) = tr
(

HT R−1H
)

.

The information gain depends on the state Xk through the measurement
Jacobian H . We argue that states producing a larger information gain will
offer measurements that are more informative to the Kalman filter.

(0 ,-d/2)

(0 , d/2)
(x , y)

0

2

1

Fig. 2. Stationary robots 0 and 1 are a distance d/2 away from the x-axis. An
analysis of the information gain is used to obtain the appropriate leap-frog path
for robot 2.
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To investigate the path optimization problem for three robots, we consider
the situation in Fig. 2 where two robots (0 and 1) lie stationary on the y-axis
an equal distance away from the x-axis (with a separation distance d). The
third robot (robot 2) acts as the moving robot in this leap-frog strategy.

For any pose (x, y, θ) of robot 2 in Fig. 2, the filter will have the following
information gain G(Xk),

Xk =

[

0
d

2
0 0

−d

2
0 x y θ

]T

G(Xk) = σ−2
z

(

6 +
4
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To determine the optimal y value for any x position of robot 2, we can take
the derivative of the information gain with respect to y, as follows,

∂G(Xk)

∂y
= 8σ2

z

(

y − d/2

((y − d/2)2 + x2)2
+

y + d/2
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)

By setting the derivative to zero, we can find the y that maximizes the
information gain. The solution is y = 0, independent of the robot’s x position.
This implies that for a robot that is “leaping” past the two stationary robots
along the direction of the x-axis, the optimal trajectory is for the robot to
trace the x-axis itself, with position y = 0 throughout the path, and pass
through the other two robots. This can be generalized for any position of
robots 0 and 1 in the plane: the trajectory of robot 2 should move along
the equidistant path between the two stationary robots to achieve maximum
information gain.

1 3 5 7

2 4 6 8

9
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1

1

1

0

0

0

0

2

2

Fig. 3. This is the leap-frog path we use for simulations and experiments, which
is based on an analysis of information gain for a team of three robots.

We introduce a new three robot leap-frog path in Fig. 3 to build off this
result. To our knowledge, this is the only path for which the moving robot, at
every time step, will trace the equidistant path between the stationary robots.
The implementation of this path involves the trailing robot of an equilateral
triangle configuration to pass through the stationary robots, establishing a
new position and a new equilateral triangle configuration on the other side.
The robots then switch roles and repeat the sequence.
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4.2 Empirical Results

To test the generated path displayed in Fig. 3, we have performed a series
of Monte Carlo simulations for three mobile robots performing cooperative
localization. The robots (when moving) are instructed to drive at a constant
0.5 m/s with α = 0.006, β = 0.02, and γ = 0.003 for the motion noise
model in Eq. 1. Relative bearing measurements are obtained at 10 Hz and
are assumed to have additive Gaussian noise with a standard deviation of 1
degree.

In Fig. 4, we compare the results of the Monte Carlo simulations for three
different paths. Path (a) is a smoothed version of the leap-frog path designed
in Sec. 4, path (b) is a trajectory obtained when the robots move in an
equilateral triangle formation, and path (c) is the same as (b) but omits the
measurements.

a) b)
50 100 150 200 250 300

0

5

10

15

x 10
-3

c)

b)

a)

tr (P  )
k

time (s)

Fig. 4. Path (a) represents the leap-frog path presented in Sec. 4, path (b) rep-
resents the optimal formation for localization, and path (c) represents odometry
only. The plot depicts the trace of the sample covariance matrix generated for a
collection of 1000 Monte Carlo simulations.

Each path was simulated for 1000 different trials with randomly generated
noise for measurements and motion. While the estimate of the state for each
trial follows the intended path due to feedback control, the actual state for
each trial is affected by the noise and drifts from the path. We measure the
filter performance by observing the distribution of the robot state over all
trials. A larger spread of data points implies worse tracking of the actual state.
To quantify the performance, we compute the trace of the sample covariance
matrix for the actual robot state computed over the 1000 simulated trials.
Fig. 4 shows a graph of this metric for each of the path types. We note that
our leap-frog path outperforms the optimal formation.

5 Experimental Evaluation

The motivating application for this work is GPS-denied autonomous cov-
erage, for which accurate positioning is of critical importance. We apply a
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smoothed version of the path depicted in Fig. 3 to a team of real robots
performing coverage.

5.1 Experimental Setup

We use three robots for outdoor localization experiments, each of which is
based on the Learning Applied to Ground Vehicles (LAGR) platform [10].
Each mobile robot has three on board computers, wheel encoders for odom-
etry, and a set of four stereo cameras mounted above the chassis. We choose
to treat the 4 stereo pairs as 8 individual bearing sensors in order to reduce
the computational load. The filter is implemented according to Sec. 3 and is
centralized (meaning that only one of the robots is running the Kalman filter
at any given time). The robots measure bearing to each other by detecting
large red spheres in the camera images with a circle Hough transform [11].
See Fig. 1 for a photograph of the robots in their experimental configurations.

5.2 Coverage Experiments

a) b) c)

Fig. 5. An experiment on the football field at Gesling Stadium at Carnegie Mellon
University. The three photos here are extracted from a video sequence used to
record the ground truth position of the robots throughout the experiment.

The photos in Fig. 5 are from a video sequence recorded during one of
our coverage experiments at Gesling stadium at Carnegie Mellon University.
We are able to use this video sequence to post-process ground truth position
data for each of the three robots. In order to do this, we compute a camera
projection matrix based on known 3D points in the image (the markings on
the football field). Then, after manually selecting a robot’s location in the
image plane, we can infer its 3D position via its projection onto the plane.

The estimated path of the robots during the aforementioned coverage
experiment is drawn in Fig. 6 (a). This estimated path follows an overall
desired path that is composed of multiple smoothed versions of the leap-frog
path displayed in Fig. 3 pasted together so as to sweep a region for coverage.
The travel distance for each robot was approximately 140m during the ex-
periment. The covered area was 20m x 30m. Ground truth points are shown
in Fig. 6 for comparison and to help quantify the localization performance.
Fig. 6 (b) shows the odometry-only estimate of the path. It is worth noting
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a) b)

Fig. 6. (a) shows the estimated trajectory of the robots during a coverage ex-
periment along with ground truth points (yellow circles). The final ground truth
position is displayed with yellow stars. (b) shows the same experiment with a filter
that ignores the bearing measurements (dead reckoning only).

how erroneous this path is (most likely due to turning biases from unequally
inflated tires) and how effective the filtering is in correcting the erroneous
path to agree closely with the ground truth data.

The true final position of the three robots is also depicted in Fig. 6. The
approximated error between the filtered estimate and the measured final
ground truth pose is: 1.09 meters for robot 0 (the red trajectory in Fig. 6),
1.01 meters for robot 1 (the green trajectory in Fig. 6) and 1.15 meters for
robot 2 (the blue trajectory in Fig. 6). We note that the accuracy of these
ground truth measurements is subject to possible user error when manu-
ally selecting the image points that correspond to the robots in the video
sequence.

The localization accuracy for this experiment is quite remarkable for this
type of outdoor robot. The presence of wheel slippage coupled with a difficult
terrain can cause severe drift in the odometry estimate over a path this
long. Additionally, the measurements that we acquire with vision can be
fairly noisy compared to more expensive laser range finders. But when an
informative path, such as the one we present in Sec. 4, is used, the accuracy
improves significantly, as shown in our experiment.

6 Conclusion

This work presents a leap-frog path designed to aid localization for a team of
three robots. The path is designed such that the moving robot travels along a
path that adds maximal information to the filter. The resulting path outper-
forms the optimal formation-based path. The experiment that we describe
is, to our knowledge, one of the largest outdoor GPS-denied coverage results,
successful in part because of precise localization.
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Although we believe the absolute optimal path (in terms of localization
accuracy) for a team of three robots would involve a leap-frog motion strategy,
the path we introduce in this paper is most likely not optimal. Precisely
defining the optimal path is still an open problem, which may require running
an exhaustive simulation to optimize over all possible combinations of motion
inputs: a task that would be computationally infeasible.

Also, this paper has focused on developing paths for a team of three
robots. We believe that a three robot team is a good fit for applications that
require accurate positioning, in part because three robots can provide proper
triangulation. That said, it is always beneficial to add additional information
to the Kalman filter, and a way to do this would be to add additional robots.
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