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Abstract—Path planning among dynamic obstacles is a fun-
damental problem in Robotics with numerous applications. In
this work, we investigate a problem called Multi-Objective Path
Planning with Dynamic Obstacles (MOPPwDOQO), which requires
finding collision-free Pareto-optimal paths amid obstacles moving
along known trajectories while simultaneously optimizing mul-
tiple conflicting objectives, such as arrival time, communication
robustness and obstacle clearance. Most of the existing multi-
objective A*-like planners consider no dynamic obstacles, and
naively applying them to address MOPPwDO can lead to large
computation times. On the other hand, efficient algorithms
such as Safe-Interval Path Planing (SIPP) can handle dynamic
obstacles but for a single objective. In this work, we develop an
algorithm called MO-SIPP by leveraging both the notion of safe
intervals from SIPP to efficiently represent the search space in the
presence of dynamic obstacles, and search techniques from multi-
objective A* algorithms. We show that MO-SIPP is guaranteed
to find the entire Pareto-optimal front, and verify MO-SIPP with
extensive numerical tests with two and three objectives. The
results show that the MO-SIPP runs up to an order of magnitude
faster than the conventional alternates.

Index Terms—Motion and Path Planning

I. INTRODUCTION

LANNING collision-free trajectories for a robot amid dy-

namic obstacles is of fundamental importance in Robotics
with numerous applications [24], [26]. In this work, we focus
on a graph-based formulation of the problem in which the goal
is to find a collision-free trajectory from a given start node
to a destination node in the presence of dynamic obstacles
whose motions are known. This problem has been addressed
for a single objective (e.g. minimizing the arrival time of the
robot at its destination) by several algorithms, such as the
popular safe-interval path planning (SIPP) [13] method and
its variants [4], [12], [27].

One can envision applications, ranging from urban search
and rescue [5], [7], autonomous driving [1] to logistics [26],
where multiple (conflicting) objectives such as arrival time,
energy consumption and communication robustness, need to
be optimized simultaneously. Aggregating these objectives into
a single, weighted objective is difficult because the choice
of weights is hard to obtain [19] and may not be known a-
priori. This challenge motivated research in multi-objective
path planning (MOPP) problems [8], [22], which generalizes
the conventional (single-objective) path planning problem by
associating each edge in the graph with a cost vector where
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Fig. 1: A motivating example of MOPPwDO in the context
of urban search and rescue. A robot needs to plan collision-
free paths among dynamic obstacles in a city-like map while
optimizing the arrival time and communication robustness
along the path. For paths with smaller arrival times, the robot
may have to traverse regions with no communication (the
white area). Computing a Pareto-optimal set of solutions can
reveal the underlying trade-off between different objectives
and can potentially help decision makers to better understand
the mission and make informed decisions.

each component of the vector corresponds to an objective to
be minimized.

In the presence of multiple conflicting objectives, in gen-
eral, there is no single solution path that optimizes all the
objectives at the same time. Therefore, the goal of MOPP
is to find a Pareto-optimal set and its corresponding cost
vectors referred to as the Pareto-optimal front. A solution is
called Pareto-optimal if no objective can be improved without
deteriorating at least one of the other objectives. Finding the
Pareto-optimal front for MOPP even with two objectives can
be computationally hard [6], [21]. There are several multi-
objective A* (MOA¥*) planners [9], [22] in the literature to
address the challenges in MOPP. However, we are not aware
of existing MOA* planners that can find the Pareto-optimal
front for a MOPP with Dynamic Obstacles (MOPPwDO). This
paper aims to fill this gap.

One way to solve MOPPwDO is to (i) add a time dimension
{0,1,...,T} to the given graph G and construct a time-
augmented graph G' = G x {0,1,...,T} where dynamic
obstacles are represented as blocked nodes in G, and (ii)
run existing MOA* planners on G to find the Pareto-optimal



front. The inclusion of the time dimension complicates the
problem as it significantly increases the size of the graph to
be searched. To bypass this challenge, we leverage the concept
of safe intervals from SIPP which compresses time steps
into contiguous safe and unsafe intervals to efficiently repre-
sent the search space. We then develop an algorithm called
Multi-Objective Safe-Interval Path Planning (MO-SIPP) by
leveraging the notion of dominance from the multi-objective
optimization literature [2] and search techniques from MOA*
algorithms [9], [23]. We show that MO-SIPP is guaranteed to
find the entire Pareto-optimal front.

Motivated by urban search and rescue [5], [7], we generate
test instances using city-like maps (Fig. 1) from an online data
set and evaluate MO-SIPP with extensive tests where arrival
time, communication robustness and obstacle clearance are
considered. Our numerical results show that MO-SIPP runs up
to an order of magnitude faster than the baseline.! To facilitate
practitioners’ usage and further development, we have made
our MO-SIPP implementation available online?.

The rest of the article discusses the related work in Sec. II,
formulates the problem in Sec. III, and reviews SIPP in
Sec. IV. We then present MO-SIPP in Sec. V, and analyze
its properties in Sec. VI. Numerical results are then presented
in Sec. VII, with conclusion and future work in Sec. VIII.

II. RELATED WORK
A. Multi-Objective Path Planning

Existing approaches for multi-objective path planning
(MOPP) problems compute an exact or approximated set of
Pareto-optimal paths for the robot between its start and goal
locations with respect to multiple objectives. One common
approach to solve a MOPP is to weight the multiple objectives
and transform it to a single-objective problem [2], [3]. The
transformed problem can then be solved using any single-
objective algorithm. This approach, however, requires an in-
depth knowledge of the application to design the weighting
procedure; it may also requires one to repeatedly solve the
transformed single-objective problem for different sets of
weights in order to capture the Pareto-optimal front which
is quite challenging [10].

Additionally, MOPP has been solved directly via graph
search techniques [9], [22], [23] and evolutionary algo-
rithms [25], to name a few, where a Pareto-optimal set of
solutions is computed exactly or approximately. These graph-
based approaches provide guarantees about finding all Pareto-
optimal solutions but may run slow for hard cases, especially
when the number of Pareto-optimal solutions is large. The
MO-SIPP in this work belongs to this category of methods
that compute a set of Pareto-optimal solutions with quality

guarantees.
Finally, MO-SIPP differs from our prior work
MOPBD* [18]. Although both algorithms consider a

dynamic environment, MOPBD* considers the scenario
where graph edge costs can change while MO-SIPP focuses
on avoiding dynamic obstacles.

I'As discussed before, adding the time dimension to the given graph and
using MOA* on the augmented graph.
Zhttps://github.com/wonderren/public_mosipp
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Fig. 2: An illustration of G, G* and dynamic obstacles. G
has 6 nodes as shown in (a). The time-augmented graph G°
is visualized with time steps between 0 and 4. A dynamic
obstacle enters the environment at node b at time 2, moves to
node e at time 3 and stays there afterwards.

B. Safe-Interval Path Planning

Safe-interval path planning (SIPP) [14] was originally de-
veloped to compute a collision-free trajectory from a start
to a goal location while minimizing the arrival time, in an
environment with dynamic obstacles moving along known
trajectories. SIPP introduces the notion of safe intervals to
efficiently represent the search space and identifies that by
arriving at each safe interval at the earliest possible time, the
computed solution is optimal. SIPP has been extended in sev-
eral variants in the literature, such as sub-optimal SIPP [13],
anytime SIPP [12], generalized SIPP [4], any-angle SIPP [27],
etc. However, all these algorithms optimize a single objective.

IITI. PROBLEM FORMULATION

Let G = (V, E) denote a graph with vertex set V' represent-
ing the possible locations of the robot in the workspace, and
edge set E representing the transition between locations. Let
G'= (V{,E") =G x{0,1,...,T} denote a time-augmented
graph corresponding to G, where each vertex v € V?! is
defined as v = (u,t),u € V,t € {0,1,...,T} and T is
the time horizon, which is typically a large positive integer.
Edges in G* are represented as E* = V* x V' where vertices
(u1,t1), (u2,t2) are connected in G* if (uj,u2) € E and
to = t1 + 1.3 In addition, (u,t), (u,t+1),u € V is connected
in G* to represent the wait in place action of the robot.

A dynamic obstacle along known trajectory is represented
as a set of blocked nodes in G*. An illustration of G, G*
and dynamic obstacles is shown in Fig. 2. Each edge e € F
is associated with a non-negative cost vector c(e) € (R*)M
with M being a positive integer and R™ being the set of
non-negative real numbers. The wait in place action takes a
constant non-negative cost vector C,,q;; at any nodes in G.

Let 7(vg,v¢) denote a path connecting a pair of vertices
v, v¢ € G via a sequence of vertices (vg,v1,...,v) in G,
where the subscript ¢ of v; € m(vg, v¢) indicates the time step
and v, and v4q are connected by an edge (vt,vi41) € E.
Additionally, path 7(vg,vy) is collision-free if for each v, €
7(vo, vg), the corresponding (v, t) is not a blocked node in G*.
Let g(m(vo,vs)) denote the cost vector corresponding to the
path 7 (vg, v¢), which is the sum of the cost vectors of all edges

3To represent an edge (ui,u2) € FE whose transition time takes
multiple time steps, note that the edge can be “broke up” into a se-
quence of nodes {u1, U, , Uky, - -, Uk, u2} so that the transition between
any two subsequent nodes takes unit time, and those intermediate nodes
{Uk, > Ukys - - -, Uk, } can be added to the graph G.



present in the path: g(m(vo,ve)) = Zi=0.1,....0-1¢(Ve, Vig1)-
To compare any two paths, we compare the cost vectors
associated with them using the dominance relation [2]:

Definition 1 (Dominance): Given two vectors a and b of

length M, a dominates b (denoted as a > b) if and only
if a(m) < b(m), Vm € {1,2,..., M}, and a(m) < b(m),
Ime{1,2,...,M}.
If a does not dominate b, we say a is non-dominated by b.
Any two paths 1 (vg, v¢), T2 (vg, v¢) are non-dominated (with
respect to each other) if the corresponding cost vectors are
non-dominated by each other.

Let v, and vy denote the initial and destination nodes in GG
respectively. The set of all non-dominated paths between v,
and vy is called the Pareto-optimal set. A maximal subset of
the Pareto-optimal set, where any two paths in this subset do
not have the same cost vector is called a cost-unique Pareto-
optimal set. This paper considers the Multi-Objective Path
Planning with Dynamic Obstacles (MOPPwDO) problem that
aims to compute a cost-unique Pareto-optimal set.

IV. A BRIEF REVIEW OF SIPP

MOPPwWDO reduces to the SIPP problem [14] when the
number of objectives (M) is equal to 1 and the cost of any
edge e € FE is the time required to traverse e. A naive
baseline approach to solve the SIPP problem is to apply A*
to search over G*. However, this A* approach is inefficient as
the time dimension is searched in a step-by-step manner (i.e.,
the time step is increased by one unit after each expansion).
To overcome this challenge, SIPP [14] compresses time steps
into intervals. Let tuple s = (v, [t4, t5]) denote a search state
at node v € G, where t,,t; are the beginning and ending time
steps of a safe (time) interval respectively. A safe interval is a
maximal contiguous time range in which a node is not blocked
by any dynamic obstacles. State s = (v, [tq, tp]) indicates that
node v is not blocked by any dynamic obstacle and hence the
name safe interval for [t,,t]. Note that, any two safe intervals
at the same node never intersect. Two states are the same, if
both states share the same node, the beginning and ending
time steps. Otherwise, two states are different. For example,
two states with the same node but different safe intervals are
different states.

SIPP conducts A*-like heuristic search. For each state s, let
g(s) represent the earliest arrival time at state s at any time of
the search and let h(s) denote the heuristic value of s, which
underestimates the cost-to-go (i.e., travel time to vy from s).
In addition, the f-value of a state is f(s) := g(s) + h(s).
Let OPEN denote the open list containing candidate states to
be expanded, where candidate states are prioritized by their
f-values.

SIPP starts by inserting the initial state s, into OPEN, where
S, 1s a tuple of v, and the safe interval with a beginning time
set to zero. In each search iteration, a state with the minimum
f-value in OPEN is popped and expanded. To expand a state
s = (v, [ta,ts]), SIPP considers all reachable successor states
from s and finds the earliest possible arrival time at each
of those states via “wait and move” actions (i.e., wait for a
minimum amount of time to arrive at the successor state as

early as possible). A key observation in SIPP is that, arriving
at a state s at the earliest possible time can generate the
maximum number of successors from state s.

We provide examples of states and state expansion. In Fig. 2,
at node b, there are two possible states (b, [0,1]) and (b, [3,T7)
while at node e, there is only one possible state (e, [0,2]).
The agent’s initial state is (a,[0,7]). To expand the initial
state, one successor is generated at node d, which is the state
(d,[0,T]) with the earliest arrival time 1, and two successors
are generated at node b, which are (b,[0,1]) and (b,[3,77)
with the earliest arrival time 1 and 3 respectively.

During the search, SIPP records the earliest arrival time
found thus far as g(s) at each state s. When a new path
is found to reach state s (from v,) with an earlier arrival
time, g(s) is updated. Here, a path from v, to some state
s = (v, [tq,ts]) means a path from v, to v with an arrival
time at v within the safe interval [¢,,t;]. When a state at the
destination node (i.e., the node contained in the state is vg) is
expanded, a path with the minimum arrival time is found and
SIPP terminates.

V. MO-SIPP
A. Concepts and Notations

As in SIPP, let a search state s = (v, [tq,5]) be a tuple
of a node and a safe interval. In SIPP, at each state s, a g-
value is maintained to keep track of the minimume-arrival-time
partial solution path from s, to s. In a multi-objective problem,
however, there can be multiple partial solution paths with non-
dominated cost vectors from v, to s, and all of them need to be
recorded at s in order to compute a set of cost-unique Pareto-
optimal solutions. The algorithm also needs to discriminate
between those non-dominated partial solutions that arrive at
the same state s with different cost vectors and arrival times.

Based on this observation, let [ = (s, g,t,.) denote a label*
at state s, which identifies a partial solution path from v, to
s with an arrival time ¢, and a cost vector . For presentation
purposes, let §(1), t,(I) and s(I) represent the cost vector,
arrival time and state associated with label [ respectively. Also,
let v(l), to (1) and t,(1) denote the node (in G), beginning time
and ending time of the safe interval of state s() respectively.
Let frontier set a(s) denote a set of labels at state s, each of
which identifies a non-dominated partial solution path from v,
to s. Let parent(!) denote the parent label of [, which enables
easy reconstruction of a path for any label after the search. In
addition, let S denote a set of (solution) labels, each of which
identifies a Pareto-optimal solution path from v, to vg.

Scalar values g, h, f used in SIPP are now replaced with the
corresponding cost vectors §, ﬁ, f in MO-SIPP. Specifically,
g is associated with labels and it describes the cost-to-come
from v,. Notation h stands for an admissible heuristic’> and
is defined over states. Intuitively, l_i(s) provides a component-
wise underestimate of the cost vector of all non-dominated

4To identify a partial solution path, different names such as nodes [23],
states [15], [18] and labels [11], [20], have been used in the multi-objective
path planning literature. This work uses “labels” to identify partial solution
paths.

5The heuristic is not required to be consistent in this work.



paths from state s to vg. Finally, f is defined over labels and
F(1) :== G(1)+h(s(1)), which underestimates the cost vector of
all paths from v, to vy via label [. At any time of the search,
let OPEN denote a list of labels, where labels are prioritized
in lexicographic order based on their ﬁvectors.

B. Algorithm Description

As shown in Algorithm 1, the pseudo-code can be roughly
divided into three parts: initialization (lines 1-5), checking and
filtering (lines 7-21) and expansion (lines 22-28).

To initialize, MO-SIPP begins by creating an initial label [,
and inserts it into OPEN. The solution set S and all frontier
sets «(s) are initialized to empty sets. Then, label [, is added
to the frontier set of the initial state «(s,).

At the beginning of each search iteration (line 6), a lex-
icographically minimum label [ is popped from OPEN for
checking and filtering before being expanded:

« (Solution check) If f(1) is dominated by the f-vector of
any solution that is already found (identified by a label
in S), [ is discarded (lines 8-9).

o (Frontier check) If [ is label-dominated (see Sec. V-C) by
any other labels in the current frontier set of s(1), then !
cannot lead to a cost-unique Pareto-optimal solution, and
is thus discarded (lines 10-11).

After those checks, if v(l) = vy, a new solution is found,
and [ is then used to filter existing solutions by removing any
label I’ € S if f(I) < f(I') (lines 13-15). This ensures that
the solution set S always contains labels that represent non-
dominated solution paths. [ is then added to S and the current
iteration ends (lines 16-17). If v(1) # vy, [ is used to filter the
frontier of state s(I) so that the frontier set a(s(l)) contains
labels that represent non-dominated partial solution paths from
v, to s(l) (lines 18-20). Then, [ is added to a(s(l)).

After all the checking and filtering, [ is expanded in a similar
way as SIPP does, with the only difference that MO-SIPP
expands and generates new labels (rather than states as in
SIPP). Specifically, to expand a label [, MO-SIPP considers
all possible reachable states from state s(I), and then for
each reachable state s’, the earliest arrival time ¢/ and the
cost vector g for reaching s’ from s(l) are computed. A
successor label I’ = (s',§,t) is then generated. Then, for
each successor label I/, the aforementioned solution check and
frontier check are applied to I’ (line 24) to ensure I’ is not
dominated. Finally, the parent of I’ is set to be I, and I’ is
added to OPEN for future expansion. The entire search process
terminates when OPEN depletes, and all cost-unique Pareto-
optimal solution paths are found (Sec. VI).

C. Label comparison

The comparison step in MO-SIPP differs from the one in
SIPP. In SIPP, when a new path from v, to a state s is found,
the g-value of this new path and the previously stored g-
value at s is compared and the smaller value is kept. In MO-
SIPP, multiple non-dominated paths, which are represented by
labels, need to be tracked at state s. To properly compare two
labels, a new type of dominance between labels is defined as
follows.

Algorithm 1 Pseudocode for MO-SIPP

1: I, < (80,0,0)

2: add [, into OPEN

38«0

4: a(s) «+ 0,Vs

5: add [, into «(s,)

6: while OPEN not empty do > Main search loop.
7 ! < pop from OPEN

8: if f(I') < f(l), 3’ € S then

9: continue > Pruned by existing solutions.
10: if I’ =; 1, 3" € a(s(l)) then

11: continue > Pruned by label dominance.
12: if v(I) = vgq then

13: for all_{' €S do > Filter existing solutions.
14: if f(I) < f(I') then

15: Remove !’ from S

16: add [ into S

17: continue > Find a new solution.
18:  for all I’ € a(s(l)) do > To filter other labels.
19: if { >; I’ then
20: Remove [’ from a(s(l))
21: add [ to a(s(l))
22: Lsyce <+ GetSuccessors(l)

23: for all I € Lgyce do _ > Label expansion.
24: it 1" =, ', 31" € a(s(l') or f(I") < f(I'), A" €S
then

25: continue
26: ) < g(l') + h(s(l'))
27 parent(l’) <+ I
28: add !’ into OPEN
29: return S

Definition 2 (Label-dominance): Given two labels [ =
(s,g,tr) and I’ = (s', g, t.) with s = s’ (i.e., nodes and safe
intervals in both s and s’ are the same), if the following two
conditions both hold: (i) ¢, < ., (il) §+ (t. — t)Cwait <
(in (i), < means component-wise no larger than), then we say
l label-dominates 1’ with notation [ >; I’. (Here, >=; can be
intuitively interpreted as “better than”.)

In this label-dominance relationship, if [ >=; I’, condition

(i) guarantees that label [ will have at least the same set of
successor labels as I’ (refer to Lemma 1 in Sec. VI). Condition
(ii) ensures that, if there exists a path 7’ from v, to vg via [/,
then the portion of the path from !’ to v4 can be cut-and-paste
to I, and the resulting path 7", which connects v, and vg via
[, has a cost that is component-wise no larger than the cost of
7. Therefore, I’ can be discarded.
Remark. Similar comparison rules to the label-dominance in
this work have been developed in GSIPP [4] for a single-
objective case, where a single non-arrival-time objective is
minimized. The label-dominance here can be regarded as a
generalization of the rule in GSIPP [4] from single-objective
to multi-objective.

D. Relationship to SIPP

For readers that are familiar with SIPP, this section explains
how MO-SIPP is related to SIPP. When MO-SIPP is applied
to solve the aforementioned SIPP problem, MO-SIPP works in
the same way as SIPP in the following sense: First, the label-
dominance rule becomes a comparison between the arrival



times of any two labels, which is the same as in SIPP. Second,
the frontier set at each state contains only a single label, whose
g-value is the minimum arrival time at s. Maintaining a frontier
set at each state is thus equivalent to maintaining a g-value
at each state. Third, the solution set S will either be empty
or contain a single optimal solution at any time during the
search, and the solution cost is the minimum arrival time at
vg. Fourth, when the first solution label [ is found, all other
candidate labels in OPEN must have a cost that is no less
than f(!) and are thus filtered in lines 8-9, which leads to
the termination of Algorithm 1. As a result, MO-SIPP solves
the SIPP problem by finding a collision-free path with the
minimum arrival time.

VI. ANALYSIS
A. Pareto-Optimality

Lemma 1: Arriving at a state s at the earliest possible time
can generate the maximum number of successors.

Proof 1: Note that the set of reachable states from a label
depends only on the arrival time of the label and is not
dependent on the cost vector of the label. Therefore, given
two labels [ = (s, g,t.) and I’ = (s,d’,t.) at the same state
s = (v, [ta,tp]) with ¢, < t, any reachable state from [’
(within time interval [t].,;]) is also reachable from [ (within
time interval [t,,?,]), regardless of the cost vectors § or §'.
Hence proved.

Lemma 2: At any time of the search, if a label at state s is
pruned, the path represented by the label cannot be part of a
cost-unique Pareto-optimal path.

Proof 2: In MO-SIPP, there are four cases where a generated
label [’ is pruned: (i) I’ is pruned in the solution check by
comparing f—vectors (lines 8-9, line 23); (ii) I’ is pruned in
the frontier check by the label-dominance (lines 10-11, line
23); (iii) I’ is filtered by a new label [ that enters S when
comparing their f-vectors (lines 13-15). (iv) I’ is filtered by
label-dominance when a new label [ enters a(s(l’)) (lines 18-
20). For either of those four cases, !’ cannot lead to a cost-
unique Pareto-optimal solution.

Therefore, in MO-SIPP, label expansion always generates
successors with the earliest arrival time which guarantees the
maximum number of successors (Lemma 1). Those generated
successor labels are pruned if they cannot lead to a cost-
unique Pareto-optimal solution (Lemma 2). MO-SIPP ter-
minates when OPEN is empty, which means all labels are
expanded or pruned, which guarantees that all cost-unique
Pareto-optimal paths are found. The corresponding cost vec-
tors of these cost-unique Pareto-optimal paths form the entire
Pareto-optimal front. This property can be summarized with
the following theorem:

Theorem 1: MO-SIPP algorithm is able to compute all cost-
unique Pareto-optimal paths connecting v, and vg.

B. Completeness

In the formulation of MOPPwDO, the maximum possible
time step is bounded by a finite time horizon T'. Therefore,

there are a finite number of states to be searched and MO-
SIPP terminates in finite time if the given problem instance
is infeasible (i.e., there does not exist a collision-free path
connecting v, and vy within the time horizon 7"). When there
exists a feasible solution, since the number of search states
and the number of paths between any pair of nodes are finite,
MO-SIPP finds a solution in finite time.

VII. NUMERICAL RESULTS

A. Test Settings and Implementation

We select four maps of different sizes from a online data
set® and generate a four-connected grid-like graph G from each
of the maps. This data set also includes 25 test instances for
each map, where each instance includes hundreds of start-goal
pairs. We use the first start-goal pair as the v, and vy for the
robot. We then use A* to plan shortest paths between other
start-goal pairs while considering only the static obstacles, and
the dynamics obstacles move back-and-forth between their
respective starts and goals along these shortest paths. The
dynamic obstacles are allowed to overlap with each other
during their movement. The number of dynamic obstacles
(denoted as #Obst) is a parameter that varies in different tests.

Motivated by urban search and rescue [5], [7], we consider
up to three objectives: arrival time, communication robustness
and obstacle clearance, each of which is represented as a
component of the cost vector of edges in G. To test MO-SIPP,
we approximate the continuous measure of communication
robustness and obstacle clearance as follows. We randomly
generate circles in each of the map (Fig. 3) to represent
the possible communication ranges after an urban disaster,
where the communication infrastructure may be partially dam-
aged [5], [7]. Each move within the communication range
incurs a unit cost, while each move outside the communication
range incurs a cost of ten (to penalize). For obstacle clearance,
we inflate all the static obstacles by a certain range, which
varies in maps of different sizes (see Fig. 6). Each move
outside the inflated zone incurs a unit cost, while each move
within the inflated zone incurs a cost of ten (to penalize). The
cost vector for the wait action Cy,q;¢ 1S set to a vector of all
ones (at any node in the graph).

We implement MO-SIPP and NAMOA* [9] in C++ without
multi-threading or compiler optimization. Here, NAMOA*
serves as a baseline and is used to search the time-augmented
graph G and is hereafter referred to as NAMOA*-st (-st stands
for space-time). The heuristic vectors for both algorithms are
computed by running an exhaustive backwards Dijkstra search
for each type of the cost over the graph G ignoring all dynamic
obstacles.” The resulting heuristic vectors are guaranteed to be
admissible. All experiments are carried out on a laptop with
a CPU i7-11800H 2.30GHz and 16GB RAM.

Shttps://movingai.com/benchmarks/mapf/index.html

7Using Dijkstra search to obtain heuristic vectors are common for MOA*-
like algorithms [17], [23] due to its small runtime in comparison with the
MOA* search. The numerical results about the runtime in this work do not
include the time to compute the heuristic vectors.



Maps and
Test Settings

Random 32x32
#0bst=100, R=6

Den312d 65x81
#0bst=200, R=10

Boston 256x256
#0Obst=300, R=32

Berlin 256x256
#0bst=300, R=32

Average/Median/Maximum Runtime (in seconds)

MO-SIPP (ours) 0.037/0.036 / 0.108

0.07/0.05/0.25

1.54/0.92/6.00 1.56/0.81/8.06

NAMOA*-st 0.043/0.030/0.184

0.10/0.05/0.59

3.18/0.84/14.66 6.74/1.84/37.79

Average/Median/Maximum Number of Expansions

MO-SIPP (ours) 347 /357 / 1136 506 /328 /2139 7837 / 4938 / 30061 8708 / 4538 / 40085
NAMOA*-st 1272 /864 / 5843 2628 /1091/16748 | 40700/ 19619 /164579 | 102233 /29484 /451515
Average/Median/Maximum Number of Solutions
| 25/20/70 [ 16/10/40 | 54/40/13.0 | 3.7/20/100
Average/Median/Maximum State-Vertex Ratios
|  36/36/45 |  42/42/68 | 66/62/131 | s8/56/112

Fig. 3: MO-SIPP and NAMOA*-st with two objectives: arrival time and communication robustness. Communication ranges are
generated as circles at random locations (the green areas). The radius of the circle (R) and the number of dynamic obstacles
(#0Obst) are shown below each map. MO-SIPP (ours) runs faster than the baseline NAMOA*-st for up to four times. In larger
maps, the advantage of MO-SIPP is more obvious. The state-vertex ratio is discussed in the text.

B. Experiment 1: Two Objectives

We begin our tests with two objectives (arrival time and
communication robustness). As shown in Fig. 3, in terms of
runtime, MO-SIPP runs up to four times faster than NAMOA *-
st, which demonstrates the efficiency of MO-SIPP. Addition-
ally, when the size of the map increases, the advantage of MO-
SIPP over the baseline becomes more obvious. We also report
the number of Pareto-optimal solutions and the number of
expansions for reference.SAdditionally, we introduce a metric
“state-vertex ratio” to describe the impact of dynamic obstacles
on the complexity of the problem, which is defined as the
ratio of the number of states being explored by MO-SIPP over
the number of vertices being explored by MO-SIPP. A state
(or vertex) is explored by MO-SIPP if at least one label is
generated at that state (or vertex).

C. Experiment 2: Varying Numbers of Obstacles

We then test MO-SIPP with the same two objectives as
the previous section and change the number of obstacles. We
select two maps, random 32x32 and Boston 256x256. In this
experiment, we let the obstacles disappear after their arrival
at the destinations to make the instances feasible. Otherwise,
when #Obst is large, for some of the instances, there is no
feasible trajectory for the robot to move from v, to vg.

As shown in Fig. 4, MO-SIPP runs faster than NAMOA*-
st in all settings. In the Boston 256x256 (large) map, MO-
SIPP runs up to an order of magnitude faster on average than

8Each expansion in MO-SIPP is in general more time-consuming than
NAMOA*-st since MO-SIPP needs to lookup safe-intervals at adjacent nodes
to find reachable states, while the expansion in NAMOA*-st only needs to
consider the next time step and adjacent nodes.

Average Runtime | Average #Exp.
Average | NAMOA*-st --A-- - Average
Runtime | MO-SIPP (ours) - K- - #EXp.
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Fig. 4: MO-SIPP and NAMOA*-st in random 32x32 (left) and
Boston 256x256 (right) with varying #Obst. The horizontal
axis shows #Obst, and the percentage of free vertices in the
graph that are occupied by the dynamic obstacles. MO-SIPP
runs faster than NAMOA*-st on average in all settings, and
is up to an order of magnitude faster than NAMOA*-st in the
larger map (right).

NAMOA *-st for any considered #Obst. For the random 32x32
(small) map, the online data set has at most 409 start-goal
pairs, and we test for up to 400 obstacles in this map. As
shown in Fig. 4, the advantage of MO-SIPP over NAMOA*-
st is less obvious in this smaller map. Additionally, after #Obst
increases above a certain threshold (e.g. 200), the runtime
of both algorithms start to decrease. To find the reason, we
simulate some of the instances (Fig. 5). The large number of
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Fig. 5: Visualization of an instance with different #Obst
(black dots), and the percentage of free vertices occupied
by the dynamic obstacles is also shown for each map. As
a complement to Fig. 4, when #Obst increases above a certain
threshold, the large number of obstacles reduces the number of
successors to be generated by both planners during the search
and thus reduces the runtime.

obstacles reduces the number of successors to be generated by
both planners during the search, and thus reduces the runtime,
which is also verified by the average number of expansions as
shown in the bar plots in Fig. 4.

D. Experiment 3: Three Objectives

Finally, we test MO-SIPP with three objectives. As shown in
Fig. 6, MO-SIPP runs up to five times faster than NAMOA*-
st. Additionally, by comparing the number of Pareto-optimal
solutions, we find that the Berlin and Boston maps with three
objectives are quite challenging as there are many Pareto-
optimal solutions to be found. The difficulty of those instances
can also be observed from the number of expansions required
by both planners. In our tests, we set a runtime limit of ten
minutes and NAMOA*-st times out for 6 and 8 instances in
the Berlin and Boston maps respectively, which are removed
from the data in Fig. 6.

With all these experiments, we can summarize our obser-
vations as follows. First, MO-SIPP (ours) runs up to an order
of magnitude faster than NAMOA*-st (baseline). Second, the
advantage of MO-SIPP becomes more obvious when the size
of the map is large. Third, increasing the number of dynamic
obstacles in general slows down MO-SIPP. But after a certain
threshold, more obstacles makes MO-SIPP run faster. Fourth,

a larger number of objectives leads to more Pareto-optimal
solutions, which slows down MO-SIPP.

VIII. CONCLUSION AND FUTURE WORK

This article considers the problem of Multi-Objective Path
Planning with Dynamic Obstacles (MOPPwDO). We develop
an algorithm called MO-SIPP by leveraging both the notion of
safe intervals from SIPP, the dominance principle from multi-
objective optimization literature and search techniques from
multi-objective A* algorithms. We show that MO-SIPP finds
the entire Pareto-optimal front and verify the performance of
MO-SIPP with extensive tests. Our numerical results show
that MO-SIPP runs up to an order of magnitude faster than
the baseline and is particularly advantageous in large maps.

There are several possible directions for future work. MO-
SIPP does not consider obstacle clearance with respect to dy-
namic obstacles or communication range centered on moving
agents. One can also extend MO-SIPP to address dynamic
obstacles along unknown or uncertain trajectories. To further
expedite MO-SIPP, one can consider leveraging other multi-
objective planning techniques (e.g. [17]) to handle the case
when there are many Pareto-optimal solutions. In addition,
MO-SIPP can also be leveraged as a building block to solve
multi-objective multi-agent planning problems [15], [16]. Fi-
nally, one can consider leveraging the recent notion of rule-
books [1] from autonomous driving to smartly select a Pareto-
optimal solution that respects the most social conventions for
execution.
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