
AUTONOMOUS VEH ICLES

Representation granularity enables time-efficient
autonomous exploration in large, complex worlds
C. Cao*, H. Zhu, Z. Ren, H. Choset, J. Zhang

We propose a dual-resolution scheme to achieve time-efficient autonomous exploration with one or many
robots. The schememaintains a high-resolution localmap of the robot’s immediate vicinity and a low-resolution
global map of the remaining areas of the environment. We believe that the strength of our approach lies in this
low- and high-resolution representation of the environment: The high-resolution local map ensures that the
robots observe the entire region in detail, and because the local map is bounded, so is the computation
burden to process it. The low-resolution global map directs the robot to explore the broad space and only re-
quires lightweight computation and low bandwidth to communicate among the robots. This paper shows the
strength of this approach for both single-robot and multirobot exploration. For multirobot exploration, we also
introduce a “pursuit” strategy for sharing information among robots with limited communication. This strategy
directs the robots to opportunistically approach each other. We found that the scheme could produce explora-
tion paths with a bounded difference in length compared with the theoretical shortest paths. Empirically, for
single-robot exploration, our method produced 80% higher time efficiency with 50% lower computational run-
times than state-of-the-art methods in more than 300 simulation and real-world experiments. For multirobot
exploration, our pursuit strategy demonstrated higher exploration time efficiency than conventional strategies
in more than 3400 simulation runs with up to 20 robots. Last, we discuss how our method was deployed in the
DARPA Subterranean Challenge and demonstrated the fastest and most complete exploration among all teams.
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INTRODUCTION
Autonomous exploration is crucial for applications where environ-
ments are often inaccessible or hazardous to humans, such as in
search and rescue, surveillance, and planetary exploration (1, 2).
Here, we consider determining paths for one or more robots to nav-
igate in an a priori unknown environment, such that the robots can
be directed to thoroughly sweep their sensors to make a representa-
tion, namely, a map, of the target environment. Such a problem is
closely related to coverage path planning (3), which seeks a path that
allows sensors to sweep over all objects in an environment. The
problem of finding the shortest path to achieve such a complete cov-
erage was shown to be non-deterministic polynomial-time hard
(NP-hard) (4). Here, the exploration problem focuses more on dis-
covering the environment and computing the coverage path on the
fly. As a result, computing the exploration paths must be performed
iteratively and incrementally to process incoming sensor data,
which can be more challenging than solving the coverage path plan-
ning problem. Sensor noise, state estimation drift, and terrain var-
iation present additional challenges. The contribution of this work
is to prescribe a two-level approach that efficiently explored an
unknown region, where efficiency was measured by both explored
volume over time and computational runtime.We validated this ap-
proach in several large-scale, complex, and cluttered environments
both in simulation and in the real world (Movie 1), including the
Subterranean (SubT) Challenge held by the Defense Advanced Re-
search Projects Agency (DARPA) (5).

Much prior work in exploration based their approaches on either
a choice of representation for the environment or the means by
which new information was acquired. In the former case, a graph
was usually formed to represent the robot’s free space. Common

approaches to form such a graph include sampling-based
methods (6–12) and topological ones (13–17). Exploration was
then achieved by incrementally growing these structures. In the
latter case, the approaches acquired new information by directly
growing the “known” free space, which we term the explored
areas. These approaches are often called frontier based because
the robot sought to expand the boundaries of the explored areas.
Alternatively, expanding the explored areas can be achieved by op-
timizing an information metric, such as entropy, to gather informa-
tion about unknown portions of the environment (18–22). To the
best of our knowledge, these approaches tend to be “greedy” in that
they look for the closest frontier or closest local minimum in
entropy to conduct exploration (23–25). We believe that nongreedy
approaches have the potential to improve the time efficiency of
exploration.

The issue of time efficiency is more complicated when consider-
ing multiple robots that have limited communication among them.
Establishing the communication for information sharing among
robots often requires them to be physically within a distance
range. Such planning requires deliberate consideration to ensure
time efficiency when exploring with multiple robots [see (26, 27)
for surveys]. Existing strategies for maintaining inter-robot com-
munication are mostly based on heuristics, which disregard
whether the information exchange can expedite or hamper the
overall exploration. In particular, the rendezvous-based strategy
has been widely adopted, where robots gather regularly in predeter-
mined locations and cadences (28–31). Furthermore, robots are
often assigned roles either as “explorers” or as “relays,” which are
tasked with either exploration or information transmission (32,
33). Other strategies required robots to always maintain connectiv-
ity (34, 35) or to regain connectivity frequently (36–38) or required
specialized hardware to deploy communication devices in the envi-
ronment (39, 40). In those strategies, maintaining communication
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was prioritized over exploration, which can limit the overall explo-
ration time efficiency.

To improve the exploration time efficiency, this paper describes
a dual-resolution framework that balances the use of high-resolu-
tion information located near the robot and the low-resolution
global information across the entire environment. Specifically, the
global information was used to effectively guide the detailed explo-
ration that relied on the high-resolution local information. Such an
approach was first introduced in our prior work (41, 42) for auton-
omous exploration using a single ground or aerial vehicle. This
paper further extends the approach for multirobot exploration. Spe-
cifically, leveraging the dual-resolution world representation, we
bring forward the “pursuit” strategy for inter-robot communication,
where robots opportunistically pursue each other to facilitate com-
munication if the information exchange can lead to faster explora-
tion overall.

We provide a theoretical analysis of our scheme and evaluated it
both in simulation and in real-world experiments. We analyzed the
computational complexity and the optimality gap resulting from the
dual-resolution representation, specifically, the difference in length
between the paths computed with and without the dual-resolution
representation. We demonstrated that the optimality gap is
bounded by a constant, independent of the environment size (pre-
sented in the Supplementary Materials, “Theoretical analysis—Ap-
proximation ratio” section). Empirically, for single-robot
exploration, our method produced 80% higher exploration time ef-
ficiency than three other state-of-the-art methods in both physical
and simulation experiments with more than 300 runs. Meanwhile,
the computational runtime of our method was 50% lower than that
of others. For multirobot exploration, our pursuit strategy produced
higher exploration time efficiency compared with the conventional
rendezvous-based strategies in more than 3400 simulation runs
with up to 20 robots. We further showcased the deployment of
our method in the SubT finals, where it achieved the fastest and
the most complete exploration among all teams, winning the
“Most Sectors Explored Award.”

RESULTS
System overview
Here, we describe how the two-level scheme could fulfill both
single-robot and multirobot exploration. The processing of the
local map at the local level remained the same in both scenarios.
The local level solved a combination of the art gallery problem
(43) and the traveling salesman problem (TSP) (44), followed by tra-
jectory optimization to determine the shortest possible path that the
robot could follow to thoroughly observe its surrounding areas. The
processing of the global map at the global level, on the other hand,
solved different combinatorial optimization problems in different
exploration scenarios. For single-robot exploration, the global
level solved a TSP to determine the shortest possible tour guiding
the robot to visit areas that have not yet been fully explored. For
multirobot exploration, the global level solved a vehicle routing
problem (VRP) (45) for allocating robots to explore different
areas while minimizing the longest exploration route among all
robots. To address the issue of limited communication, where
robots need to meet at designated locations within prespecified
time intervals for sharing information, the global level solved the
VRP with time window constraints (46) to find such global paths.
Both the conventional rendezvous-based strategies and our pursuit
strategy were implemented under such a scheme.

Our scheme could be deployed for autonomous exploration in
simulation and in the real world by leveraging a popular three-
layer architecture for robotic systems (47, 48), as shown in Fig. 1.
Our scheme operated at layer 1 (blue) to compute the exploration
path. Layer 2 (red) consisted of navigation modules responsible for
avoiding collision while following the exploration path. Layer 3
(green) interfaced with hardware, including sensors and actuators,
for state estimation, processing sensory data, and driving
the motors.

To facilitate developing and benchmarking algorithms for au-
tonomous exploration, we open-sourced our method together
with a software stack that consists of the layer 2 navigation
modules, environment models, and visualization tools (www.

Movie 1. An overview of our proposed exploration method. This video cover is a composite image of the ground robot used in the experiment and the point cloud
map constructed during the exploration.
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cmu-exploration.com). All simulation experiments discussed in the
following were evaluated with the software stack. A detailed discus-
sion of the software stack is presented in the Supplementary Mate-
rials (“Development environment and benchmarking
system” section).

Experiment platforms
Our experiment platforms included a wheelchair-based ground
vehicle and an aerial vehicle, as shown in Fig. 1 (orange box).
Both vehicles had their simulated counterparts in the Gazebo sim-
ulator (49) for simulation experiments. The real and simulated ve-
hicles were equipped with a Velodyne Puck light detection and
ranging (LiDAR) for exploration and mapping. For real vehicles,
a camera at 640 pixel–by–360 pixel resolution and a micro-electro-
mechanical systems (MEMS)–based inertial measurement unit
(IMU) were coupled with the LiDAR for state estimations (50).
The aerial vehicle had a maximum speed of 2.5 m/s in the real
world and 5 m/s in the simulation. The maximum speed of the
ground vehicle was set at 2 m/s in both the real world and simula-
tion. All experiments were run on a 4.1 GHz i7 computer. All eval-
uated exploration algorithms were run along the navigation

modules from our open-source software stack. The configuration
and parameters used in our method are presented in the Supple-
mentary Materials (“Implementation details” section).

Baseline methods
We compared our method against five baseline methods. Specifi-
cally, three of them were sampling-based methods: Next-Best-
View Planner (NBVP) (6), Graph-based Planner (GBP) (7), and
Motion-primitive–based Planner (MBP) (8), which had shown
promising results in handling real-world scenarios and were de-
ployed by the winning teams in the SubT challenge. The other
two methods included a topology-based strategy, specifically
GVGExp (15), and an information gain–based strategy, denoted
as Information-Theoretical Exploration (ITE) (51). Except for
ITE, which was implemented by us, all other methods were evalu-
ated using open-source code adapted to our evaluation environ-
ments. A brief summary of each of the methods is given as follows.

NBVP is a method that grows a rapidly exploring random tree
(RRT) (52) in the free space and finds the most informative
branch in the RRT as the path to the next viewpoint. GBP is an ex-
tension of NBVP, where the method constructs a rapidly exploring
random graph (RRG) (53) in the entire environment and searches
the RRG for routes that maximize the observation in the environ-
ment. MBP is a variant of GBP, which constructs a local RRT using
motion primitives. The resulting paths are smoother but only span
in constrained directions. GVGExp is a method that incrementally
builds a generalized Voronoi graph (GVG) to capture the topology
of the environment. The robot visits nodes on the GVG that are
close to frontiers in a depth-first search fashion. ITE is an informa-
tion gain–based method. The method uses a motion primitive
library and selects the primitive that maximizes the information
gain obtained within a local region. To maintain coherency and
comply with paper length constraints, the evaluation results of
GVGExp and ITE are presented in the Supplementary Materials
(“Additional comparison results in simulation” section).

Evaluation environments and metrics
The environments to be explored were chosen or designed to resem-
ble real-world challenges, including but not limited to large-scale
space, undulating terrains, convoluted topologies, cluttered obsta-
cles, and unstructured environments. We evaluated the algorithm
performance mainly from two perspectives, including exploration
time efficiency, measured by average explored volume per second
through a run, and algorithm runtime, the time spent in each plan-
ning step to compute the exploration path by incorporating sensory
information. Detailed statistics on exploration time efficiency and
algorithm runtime for all experiments are documented in tables
S1 to S4.

In the experiments, a run was terminated if the exploration algo-
rithm reported completion, the vehicle almost stopped moving (less
than 9 m of movement within 300 s), or the time limit was met (set
to twice the time our method used to explore the environment). For
each environment, we restricted the area of exploration by setting a
geofence in the software. This involved roughly estimating the ex-
pansion of the exploration area and approximating its boundary
with a polygon. Frontiers/object surfaces located outside of the geo-
fence were excluded from exploration. Consequently, the robot only
explored the area within the designated boundary. The NBVP’s per-
formance was dependent on the size of the geofence, which

Fig. 1. The three-layer architecture for a robotic system. Our method operates
at layer 1. The blue box shows an illustration of our exploration scheme. Inside the
local planning horizon (open green box), information is maintained with high res-
olution to compute a detailed path (dark blue curve). At the global scale, informa-
tion is maintained with low resolution within subspaces (solid green cubes) to
compute a coarse global path (light blue curve). The two paths are concatenated
together as the overall exploration path for the robot to follow.
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specified the maximum area within which frontiers were computed
and evaluated. The exploration efficiency of NBVP increased as the
area became larger, but the runtime also increased, leading to even-
tual performance degradation. We fine-tuned the area size for
NBVP to balance exploration and runtime efficiency for optimal
performance in our evaluation environments.

Ground-based autonomous exploration in the real world
Figure 2 shows the results of three real-world experiments conduct-
ed with a wheeled vehicle. Test 1 was conducted in a multistory
garage in the real world (Movie 2). The garage had four levels con-
nected by a spiral driveway. An outdoor patio was connected to the
top level, and a long corridor was connected to the bottom level.
The starting point of exploration was located at the garage entrance
at the top level. Figure 2A(i) shows trajectories from all methods
separately. The point cloud map and trajectory from our method
are shown in Fig. 2A(ii). Figure 2A(iii) compares the explored
volume and algorithm runtime over time, where our method
achieved the highest exploration time efficiency with the lowest
runtime. Only our method could explore the whole environment,
which reported completion after traveling 1839 m in 1907 s. All
other methods terminated early inside the garage and missed the
top-level patio. In particular, NBVP reached the time limit
whereby the robot moved back and forth for an extended period
of more than 500 s. GBP, on the other hand, failed to plan feasible
paths toward the end of the exploration, causing the robot to halt.
Last, MBP experienced prolonged runtime after 25 min of explora-
tion, causing the robot to move briefly before becoming inactive for
extended periods while waiting for the planning to complete. The
repetitive trajectories exhibited by NBVP and MBP, as well as the
stopping point of GBP, are highlighted in Fig. 2A(i) by red
dotted-line boxes and a red arrow, respectively. All methods
except ours exhibited “spikes” in their runtime profiles, which
account for the long planning time to process the accumulated in-
formation. The runtime of our method constantly stayed below 1 s
through the run.

Test 2 was conducted in a large indoor environment consisting
of lobbies and dining areas connected by long corridors (movie S1).
The primary challenge of the environment was its complex and
branching topology. Figure 2B shows the results of test 2 in a
layout similar to Fig. 2A. The exploration started from one end of
the environment, as indicated by the blue dot in Fig. 2B(i). Our
method completed the exploration after traveling over 988 m in
1167 s. Other methods left large portions of the environment un-
covered. GBP and MBP exhibited periodic switching between two
goal locations, resulting in repetitive back-and-forth movements
until the end of the run. Conversely, NBVP encountered difficulty
traversing a long corridor and repeatedly veered toward the corners
of the building, as shown in the close-up view in Fig. 2B(ii). The
point cloud map was manually cleaned for visualization purposes
after the exploration, where noise points resulting from pedestrians
passing by, reflections of the glass, and structures seen through
windows were removed.

Test 3 was conducted in a challenging environment comprising a
cluttered indoor space and hilly outdoor terrains (Movie 3). The ex-
ploration started from within a cluttered garage as shown in Fig.
2C(i) and proceeded through an open outdoor region, encompass-
ing multiple hills with a cumulative elevation change of 16.0 m,
shown in Fig. 2C(ii). The environment posed additional challenges,
including a mix of spacious and confined areas, restricted passages,
and perceptual challenges resulting from the presence of unstruc-
tured vegetation, leading to noisy point cloud data. Only our
method was evaluated in this environment, because its difficulty
level exceeded the capabilities of other methods. The resulting
point cloud maps and robot trajectories are shown in Fig. 2C.
Our method completed the exploration after traveling over 1403
m in 1217 s.

Ground-based autonomous exploration in simulation
We further conducted a series of tests in five simulation environ-
ments. In these tests, we provided the best possible results from
human practice as a reference. The results were collected from a
human operator who teleoperated a simulated robot with a joystick

Movie 2. Autonomous exploration using a ground vehicle in a four-story garage in test 1.
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Fig. 2. Ground-based autonomous exploration in the real world. The starting points of exploration are indicated by the blue dots. The point cloud maps were pro-
duced by stacking individual LiDAR scans together using the state estimation and mapping algorithm (50). (A) Test 1: A four-story garage with a connected patio. [A(i)]
shows the trajectories from each method. The trajectories are color-coded to indicate temporal progression, starting with blue and ending in red. The point cloud map
resulting from ourmethod is shown in [A(ii)]. Explored volume and algorithm runtime over time are shown in [A(iii)]. (B) Test 2: An indoor environment with long corridors
connecting open areas. The panel layout is similar to (A). (C) Test 3: A large-scale environment mixing cluttered indoor and hilly outdoor spaces. [C(i)] and [C(ii)] show the
same point cloud map and robot trajectory viewed from different perspectives. Only our method was evaluated in this environment, because the difficulty was beyond
what other methods can handle, and thus, there are no plots for the other methods.
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controller to explore each environment. The human operator had
prior knowledge of the environment and had practiced it many
times before collecting the best results. All methods were run with
10 trials in each environment. Our method could completely
explore all environments with the highest exploration efficiency,
which was about 80% of the human-level efficiency, whereas the
other methods were about 5 to 40% of the human performance,
as shown in table S1. In addition, our method had the lowest
runtime in all environments, which was about an order of magni-
tude lower than that of the other methods, as shown in table S2.

Figure 3A shows the results of test 4 in the campus environment.
The environment was modeled from a part of the Carnegie Mellon
University campus. The challenges of this environment included
three-dimensional (3D) terrain and unstructured obstacles. The
space for exploration consisted of two parts connected only by a
long and narrow bridge. The human practice covered one part of
the environment completely before moving on to the other part
across the bridge, eliminating the need to come back through the
bridge again. Although there were instances where our method fin-
ished one side of the environment before crossing the bridge, as
shown by the trajectories in the figure, there was no guarantee
that this would occur consistently. The other methods often failed
to create nodes that could traverse the narrow bridge entrance
because of the random sampling process used in constructing the
RRT or RRG, resulting in a failure to explore across or return
from the bridge.

Figure 3B shows the results of test 5 in the garage environment. It
was one of the most challenging environments because of its large
scale, multiple levels, and amix of open spacewith narrow entrances
(movie S2). The human practice explored upward level by level. At
each level, it visited all connected side rooms before moving to the
next level, thus eliminating the need to return to lower levels. Our
method could explore the entire environment but tended to explore
some side rooms at the end, causing the overhead of moving
between levels. Other methods exhibited back-and-forth move-
ments, prolonged runtime, or inability to navigate through the

narrow entrances of side rooms, consequently leaving large areas
of the environment unexplored.

Figure 3C shows the results of test 6 in the indoor environment.
The environment consisted of lobby rooms connected by long and
narrow corridors. Obstacles and occlusion created by objects of ir-
regular shapes and thin structures presented navigation challenges.
All methods, except for NBVP, could fully cover the environment in
most trials.

Figure 3D shows the results of test 7 in the tunnel environment.
The environment had the largest footprint (330 m by 250 m) and
was modeled after the Bruceton Research Mine in Pittsburgh, PA.
The challenge of this environment was presented by its convoluted
topology consisting of loops and junctions. GBP and our method
could explore the entire tunnel, whereas NBVP and MBP left
large portions of the environment unexplored. In particular,
NBVP exhibited back-and-forth movements, whereas MBP experi-
enced prolonged runtime.

Figure 3E shows the results of test 8 in the forest environment.
The environment was highly unstructured, with no predefined
paths. The vehicle could almost go in any direction. The best
human practice followed a predefined route with a lawn mowing
pattern. All methods except for NBVP were capable of fully cover-
ing the environment. However, GBP and MBP revisited places re-
dundantly, which took more time to complete the exploration.

Aerial-based autonomous exploration
Test 9 used the simulated aerial vehicle to explore the campus envi-
ronment as in test 4. The aerial vehicle must fly up and down to
cover the roofs of low-rise buildings and the exteriors of high-rise
buildings while avoiding extruding building structures. Each
method was run with 10 trials starting from the same position in-
dicated by blue dots. Figure 4A(i) shows the resulting point cloud
maps and trajectories of all methods from a representative trial. Our
method could cover the entire environment after traveling 1318 m
on average and 366 s in the longest run. The time limit for the other
methods was set to four times that of our longest run. Within the
time limit, none of the other methods could completely explore the

Movie 3. Autonomous exploration using a ground vehicle in a complex environment in test 3.
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Fig. 3. Ground-based autonomous exploration in simulation. (A to E) Results of tests 4 to 8, where the environment overview, resulting point cloud maps, and robot
trajectories from representative trials from all methods are shown alongside the comparisons of exploration time efficiency and runtime plots. The robot trajectories are
color-coded to indicate temporal progression, starting with blue and ending in red. The curves show mean values, and shaded areas represent the SD over 10 trials.
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environment. Because of the 3D and more complex space to be ex-
plored, all other methods exhibited longer runtimes than the
ground vehicle cases. Consequently, the robot experienced
notably more idle time while awaiting planning results. Figure
4A(ii) gives results of comparison of the exploration time efficiency
and algorithm runtime.

Test 10 used an aerial vehicle to explore an outdoor environment
in the real world (movie S3). The environment was where test 3 was
conducted but included exteriors of buildings and space that were
not reachable by the ground robot. In addition, the overhanging
walkways and tree branches challenged the reactiveness of the ex-
ploration planner. Because of the limited computational resources
on the aerial vehicle, only our method was evaluated in this test.
Figure 4B shows the results. Our method finished the exploration
after traveling over 550 m in 300 s.

Multirobot exploration with limited communication
We extended ourmethod formultirobot exploration.We investigat-
ed how the exploration time efficiency increased with more robots
deployed in the environment. In addition, our method was adapted
to implement different coordination strategies for exploration
under communication constraints. We investigated four communi-
cation strategies described in the following.
“Full comms” is a hypothetical scenario where robots always

have full communication with each other. “Single-point rendez-
vous” is the conventional rendezvous strategy where robots meet
regularly at predetermined locations to exchange information.

“Multipoint rendezvous” is a variant of the rendezvous strategy
where robots gather at different locations to expand the communi-
cation range while waiting for others. “Pursuit” is our proposed
strategy where robots opportunistically pursue each other to com-
municate if the information exchange can improve the overall ex-
ploration time efficiency (movie S4).

All four communication strategies were realized under our pro-
posed scheme.We conducted experiments to evaluate the four strat-
egies in the five simulation environments as in tests 4 through 8.
The number of robots deployed for exploration ranged from 2 to
20 at a step size of 2. We ran 10 trials for each combination of en-
vironment, number of robots, and communication strategy, result-
ing in 2000 trials in total. The distance range for communication
was set to 30 m to resemble a realistic wireless connection range.

Furthermore, we investigated the influence of communication
range on exploration efficiency. We conducted experiments in the
tunnel environment using varying communication ranges ranging
from 10 to 300 m while maintaining a constant number of robots,
namely, 5, 10, 15, and 20. Each configuration of the experiment was
run for 10 trials, which resulted in more than 1400 trials in total.

Figure 5A shows the exploration time efficiency over increasing
numbers of robots for each environment. Overall, full communica-
tion resulted in the highest exploration time efficiency. Our pursuit
strategy came in second and was superior to both rendezvous-based
strategies in all five environments. The multipoint rendezvous strat-
egy had a slightly higher performance than the single-point rendez-
vous strategy. For all environments, increasing the number of robots

Fig. 4. Aerial-based autonomous exploration. (A) Results of test 9, which used an aerial vehicle to explore the campus environment in simulation. [A(i)] shows rep-
resentative resulting point cloud maps and trajectories of all methods. The blue dots indicate the starting point. The robot trajectories are color-coded to indicate tem-
poral progression, starting with blue and ending in red. Explored volume and algorithm runtime over time are shown in [A(ii)]. The curves showmean values, and shaded
areas represent the SD over 10 trials. (B) Results of test 10 using an aerial vehicle to explore a complex environment over 3D terrain in the real world. Our method finished
exploring the environment after traveling over 550 m in 300 s.
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Fig. 5. Results of multirobot exploration under communication constraints. (A) Resulting exploration time efficiencies with mean values (curves) and SD (shaded
areas) over 10 trials in all five simulation environments against increasing numbers of robots. [B(i) and B(ii)] Two instances of 20 robots exploring the tunnel environment
using our pursuit strategy. Coordinate frames show the robots’ positions. Circles show the communication range (30 m). Red circles indicate that the robot is out of
comms with any robots. Green circles indicate that the robot is in comms with at least one robot. Yellow or cyan circles indicate that the robot is pursuing other robots to
deliver or request information, respectively. [B(iii)] Resulting point cloud map and trajectories from the 20-robot exploration. (C) Resulting exploration time efficiency
against increasing communication ranges with a fixed number of robots (5, 15, 10, and 20) in the tunnel environment.
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yielded diminishing returns in time efficiency. The diminishing
returns came sooner in environments with simpler topologies,
such as the campus, garage, and indoor environments. In addition,
a large number of robots could form a well-connected communica-
tion network covering most of the environment; thus, the perfor-
mance gaps between full comms and other strategies became
smaller with more robots. In small environments like the indoor
and forest environments, all strategies exhibited similar exploration
time efficiency eventually.

Figure 5B(i) shows an instance of one of the trials where 20
robots were deployed to explore the tunnel environment. Robot po-
sitions are indicated by coordinate frames, where circles around
them show the communication range. The circles are color-coded
to indicate the robots’ communication status. Red indicates that a
robot is out of comms with all other robots. Green indicates that
a robot is in communication with at least one other robot. Yellow
(pointed with arrows) indicates that the robot has surplus informa-
tion and decides to deliver it to others. Cyan indicates that the robot
has nowhere to explore and thus pursues others to request more in-
formation. In Fig. 5B(ii), all robots had finished exploring areas
known to themselves and thus pursued each other to request
more information, where they spontaneously gathered at a location
to exchange information. Once they had confirmed from others that
there was nowhere else to explore in the entire environment, they
reported the completion of the exploration and returned to the
starting position. Figure 5B(iii) shows one of the resulting point
cloud maps and trajectories from the 20-robot exploration.

Figure 5C shows the exploration time efficiency over increasing
communication ranges in the tunnel environment. The results in-
dicated that all strategies converged to full comms level of perfor-
mancewhen the communication rangewas sufficiently large (100 to
300 m). The pursuit strategy outperformed other strategies when
the communication range was too small (less than 10 m), albeit

with a relatively small performance gap. The results revealed that
the pursuit strategy attained 39% higher exploration efficiency on
average than other strategies in the mid-range communication dis-
tances (20 to 50 m), which are typical in real-world scenarios. This
confirmed the strength and practical applicability of our method.

Deployment in the DARPA SubT Challenge
The DARPA SubT Challenge highlighted autonomous navigation
and exploration in underground, GPS-denied environments. The
challenge involved three types of environments: tunnel systems,
urban underground, and cave networks. Teams deployed a fleet of
autonomous vehicles to search for artifacts (backpacks, mobile
phones, and so on) and reported their locations. A human operator
was allowed to command the vehicles from the entrance of the en-
vironment over intermittent wireless networks.

Our method was deployed by Team Explorer (54) in the compe-
tition with three ground vehicles. An overview of the system is pre-
sented in the Supplementary Materials (“System integration”
section). Figure 6A shows a representative result from a competition
run in the Urban Circuit, which was held within an abandoned
nuclear plant at Satsop Business Park in Elma, WA. One vehicle
used our method to explore the environment fully autonomously,
traveling over 886m in 1458 s. Figure 6B shows the result of the final
competition held in Louisville Mega Cavern, KY. The course com-
bines tunnel, urban, and cave settings with complex topology.
Dynamic obstacles and heavy fogs were present in the course for
additional perception and planning challenges. Three vehicles
using our method explored the environment collaboratively. The
three vehicles traveled over 596.6, 499.8, and 445.2 m, respectively,
over a time span of 2259 s, which covered 26 of 28 sectors of the
competition course. Our vehicles explored more than 80% of the
environment in the first half of the hour-long competition. The ex-
ploration was the fastest and the most complete among all teams, as

Movie 4. Three ground robots running our method were deployed in the DARPA SubT Challenge.
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shown in Fig. 6C, which led to our team winning the Most Sectors
Explored Award granted by DARPA (Movie 4).

In addition, we present a test run conducted in a real-world
indoor environment as part of our preparations for the SubT final
event. The results are shown in Fig. 6D. The experiment showcased
the effectiveness of our pursuit strategy in facilitating collaborative
exploration among three ground robots denoted by red, green, and
blue colors. In the figure, robot 1 (red) initiated the exploration, fol-
lowed by robot 2 (blue) and robot 3 (green). At point A, robot 1
completed its exploration and began to pursue robot 3. At point
B, robot 1 reached robot 3 to exchange information and explored
the rest of the environment thereafter.

DISCUSSION
In terms of single-robot exploration, our method still has consider-
able performance gaps compared with human practices, because it
is based on reasoning solely on the observed geometry of the envi-
ronment. In future work, we plan to bridge these gaps by incorpo-
rating semantic information and spatial prediction to achieve
human-level reasoning during exploration tasks. This will require
the incorporation of additional sensing modalities, such as 360°
cameras, because humans are proficient at using visual information
and predictions to guide exploration. For instance, whereas a
doorway indicates more unexplored space beyond it for humans

to explore, it appears only as a small frontier to robots from a geo-
metric standpoint. In addition, we plan to investigate strategies for
prioritizing specific subspaces for early exploration. This approach
holds practical value in certain applications, such as search and
rescue, where identifying specific areas for exploration may be pri-
oritized for the purpose of locating survivors rather than exploring
the entire environment.

For multirobot exploration, we plan to incorporate heteroge-
neous robots with different mobility modalities, such as wheeled,
tracked, legged, and aerial vehicles, and varied sensing configura-
tions with different fields of view and ranges. To accomplish this,
we will need to enhance our scheme to represent the robots’ hetero-
geneity in greater detail and formulate combinatorial optimization
problems that consider multiple objectives and constraints. In addi-
tion, we plan to investigate the challenges of exploring highly
dynamic environments, such as crowded areas, where close proxim-
ity to pedestrians or other robots presents unique challenges.

MATERIALS AND METHODS
Method overview
The key aspect of our method is the dual-resolution presentation,
which facilitates processing at two distinct data granularities: local
planning using high-resolution data and global planning using low-
resolution data. This approach offers two notable advantages. First,

Fig. 6. Deployment in the DARPA Subterranean Challenge.Ourmethodwas deployed in two events of SubT. (A) The urban circuit took place at Satsop Business Park in
Elma, WA in February 2020. Our vehicle traveled over 886 m in 1458 s to explore the entire floor. (B) The final event took place in Louisville Mega Cavern, KY in September
2021. Three ground vehicles (blue, green, and red curves) running our method collaboratively explored the environment. The environment included convoluted topol-
ogy, rough terrains, and cluttered obstacles. (C) Sectors explored over time of the three ground vehicles in the SubT final event. The statistics were gathered from the
official competition playback from DARPA. Team Explorer (ours) had the fastest and the most complete exploration. (D) Practice run with three ground vehicles in an
indoor environment. The start point of the exploration is indicated by the blue dot. The vehicle of the red trajectory pursued the vehicle of the green trajectory for
communication from point A to point B.
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it allows for long-term planning, whereby global planning guides
local planning. Second, it results in low computational runtime,
which enables fast replanning. These two features combine to
provide superior exploration efficiency and coverage completeness.

In the following sections, we first present the problem definition,
where the exploration task is formulated as a surface coverage
problem. Next, we introduce the local planning method, which
guarantees thorough coverage of the robot’s immediate surround-
ings. Subsequently, we elaborate on how global planning guides
local planning toward distant regions, leading to thorough and ef-
ficient exploration of the entire environment. Furthermore, we
extend this dual-resolution representation to a multirobot explora-
tion scenario, where the low-resolution global representation can be
efficiently shared among robots for coordination. Last, we present
the pursuit strategy, which leverages the shared global representa-
tion to address the constraints of limited communication during
collaborative exploration.

For illustrations of the method, detailed algorithms, and imple-
mentation details for handling perception noise, accumulative lo-
calization errors, and dynamic obstacles, we direct readers to the
Supplementary Materials (fig. S2, Algorithms 1 to 4, and the “Im-
plementation details” section). To enhance readability, we have con-
solidated the frequently used notations in table S7 for easy reference
throughout the subsequent sections.

Problem definition
Define W , R3 as the workspace to be explored. Let Wtrav , W

be the traversable subspace. Define viewpoint v ∈ SE(3) to describe
the pose of the sensor onboard the vehicle, v = [pv, qv], where pv [

Wtrav and qv ∈ SO(3), respectively, denote the position and orien-
tation. Denote ℒ = {v1, …, vn : vi ∈ SE(3)} as the set of n viewpoints
along the vehicle past trajectory. We here use the term “surface” to
refer to the generalized surface perceived by the vehicle, specifically,
the boundaries between free space and non-free space, where the
non-free space includes both occupied and unknown space. Let
Sv , W be the surfaces perceived by the sensor at v. The union
of surfaces perceived at the viewpoints along ℒ is

S ¼ <v[L Sv ð1Þ

Note that the same surface can be perceived frommultiple view-
points. The surfaces are considered covered if they meet certain cri-
teria given by Eqs. 2 and 3 in the “Local planning” section. Let
Scov , S denote a subset of the perceived surfaces that are
covered so far during the exploration. The perceived yet uncovered
surfaces are denoted as S ¼S nScov. The exploration problem
defined here is to find the shortest path, which, when followed by
the vehicle, covers S. The path must respect the kinematic and
dynamic constraints of the vehicle. Let vcurrent be the viewpoint
located at the vehicle’s current sensor pose. The exploration
problem can be defined as follows:

Problem 1: Given S and vcurrent, find the shortest path T�

formed by n viewpoints v1, v2, …, vn, and n ∈ℤ+, which, when fol-
lowed by the vehicle, covers S, such that vcurrent [ T�, and T� is
“kinodynamically” feasible.

Problem 1 is solved repetitively at each planning cycle during the
exploration. We use S, the perceived yet uncovered surfaces, to
compute the exploration path. When executing the path, we
online update S with up-to-date sensor readings, processing both

displaced and newly perceived surfaces. Then, wemove surfaces that
are covered from S to Scov and use S in the next planning cycle;
hence, the exploration continues.

When there are N ∈ ℤ+ vehicles deployed for exploration, we
seek a plan to minimize the overall time between when the first
vehicle starts exploring and when the last vehicle finishes exploring.
Here, we assume all vehicles start exploring simultaneously; thus, it
is equivalent to a minimax problem that minimizes the longest path
among all vehicles.

The derivation ofS considers the vehicle’s traversable space and
viewpoint coverage, which encode the vehicle’s mobility, endur-
ance, and sensing capability. To account for the heterogeneity in
such aspects, we useSi to denote the uncovered surfaces observable
by vehicle i, i∈ {1,…,N}. The heterogeneity of vehicles is reflected in
the area size of Si such that a vehicle with more capable mobility,
longer endurance, and a larger sensing field of view can in general
result in a larger area size. Denote S ¼ <i S

i
; i [ f1; . . .;Ng and

denote lðTÞ the length of path T. We can extend Problem 1 to in-
corporate N vehicles with their current sensor poses {vcurrent1, …,
vcurrentN} as follows:

Problem 2:GivenS
i
; i [ f1; . . .;Ng; and {vcurrent1,…, vcurrentN},

find a set of paths fT�1; . . .;T�Ng formed by viewpoints {{v11, v21,
…}, …, {v1N, v2N, …}}, which, when followed by the N vehicles, cover
S, such that for all i ∈ {1,…,N}, vcurrenti [ T�i,T�iis kinodynami-
cally feasible, and maxflðT�1Þ; . . .; lðT�NÞg is minimized.

Local planning—Viewpoint sampling
We here define the criteria for a surface point to be covered by the
sensor. Consider a surface patch centered at ps [ Wwith normal ns
∈ ℝ3 pointing toward the free-space side; the center point on the
surface patch is covered by viewpoint v, if

j ps � pv j� D ð2Þ

ns � ðpv � psÞ
j ns jj pv � ps j

� T ð3Þ

where D and T are two constants constraining the relative distance
and orientation of the surface patch with respect to the viewpoint.
Such criteria ensure the surfaces to be perceived well. In practice, D
is set to be shorter than the physical sensor range.

Define H , W as the local planning horizon as shown in fig.
S2A. Let ℋtrav , ℋ be the traversable subspace identified by con-
sidering collision and connectivity, and let CH

trav be the correspond-
ing configuration space considering rotation and translation. Define
SH , S as the uncovered surfaces that can be perceived from
viewpoints in CH

trav. The problem of viewpoint sampling is equiva-
lent to a set cover problem (55), which seeks a minimum set of view-
points in CH

trav to cover SH. Let Sv , SH denote the uncovered
surfaces to be perceived from v [ CH

trav. The reward of v is defined
as the area of Sv, denoted as Av. The viewpoint sampling problem
exhibits submodularity (56); specifically, with more viewpoints se-
lected, the reward of selecting an additional viewpoint decreases.
This is because nearby viewpoints have overlapping field of views,
and the same surface can be perceived from multiple viewpoints.
Consequently, the reward of a viewpoint is dependent on the view-
points selected earlier. Let vi, i ∈ ℤ+, be the ith viewpoint selected.
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The uncovered surfaces Svi to be perceived from vi need to be ad-
justed to Svi n<i� 1

j¼1 ðSvi > SvjÞ. Then, Avi, the surface area of
Svi , is adjusted accordingly. Figure S2B gives an illustration of
the local planning process from one of the real-world runs. The de-
tailed algorithm that samples viewpoints for a complete coverage of
the local area is presented in the Supplementary Materials (Algo-
rithms 1 and 2).

Global planning—Space subdivision
We divided the space outside ℋ into even cuboid subspaces. Each
subspace stores the covered and uncovered surfaces developed
during the exploration. The data are kept in the subspaces only
for storage, whereas the data in ℋ are updated as the exploration
proceeds. Each subspace holds a status from “unexplored,” “explor-
ing,” and “explored.” If a subspace does not contain any covered or
uncovered surfaces, the status is unexplored. If a subspace contains
only covered surfaces, the status is explored. If a subspace contains
any uncovered surfaces, the status is exploring. We only consider
the exploring subspaces in global planning. Denote Gh , W, h ∈
ℤ+ as an exploring subspace and Ĝ as the set of exploring subspaces.
The global planning problem is to find a global path Tglobal that
goes through the current viewpoint vcurrent and the centroid of
each subspace in Ĝ. An illustration of the global exploring subspaces
during a real-world exploration run is shown in fig. S2B.

During the exploration, we constructed a global roadmap in the
traversable space along the vehicle’s past trajectory, as shown in fig.
S2C. The global roadmap is a graph where nodes represent physical
traversable positions in the environment. A pair of nodes are con-
nected by an edge if a traversable path exists between them. To avoid
redundant computation for collision checking and path planning,
the viewpoint candidates obtained by solving the aforementioned
viewpoint sampling problem are reused as nodes in the graph.
Recall that viewpoint candidates are uniformly generated in ℋtrav
with collision and connectivity taken into consideration. In other
words, each viewpoint candidate is collision-free and is connected
with any other viewpoint candidates in ℋtrav with a traversable
path. A subset of viewpoint candidates is reused as nodes in the
global roadmap to avoid redundant collision and connectivity
checking. To ensure sparsity of the roadmap, the viewpoint candi-
dates are randomly sampled at a fixed resolution to maintain a suf-
ficiently connected roadmap without incurring high computational
cost. The detailed implementation of the roadmap can be found in
our open-source code. Other data structures or route planning al-
gorithms can be used in place of the global roadmap so long as they
are probabilistically complete in computing shortest paths between
two locations.We used the A* algorithm to search for shortest paths
between two subspaces on the global roadmap.

To maintain conciseness, the global planning method for a
single robot is provided in the Supplementary Materials (Algorithm
3). In addition, we encourage readers to refer to our prior works (41,
42) for more detailed information.

Global planning—Multirobot exploration
We assume that all robots are initialized in the same coordinate
frame and have prior knowledge of other robots’ starting positions.
For coordination, robots’ current positions, the status of exploring
and explored subspaces, and their traversability are shared among

all robots. Only new information is shared each time to avoid redun-
dant transmission.

With a synchronized global understanding, each robot uses a
procedure similar to Algorithm 3 to compute the exploration
path. Instead of solving a TSP, each robot solves a VRP to
compute a set of global paths fTglobal

ig; i [ f1; . . .Ng for all N
robots to visit all exploring subspaces. The ith robot then takes
Ti

global as its global path for execution. Here, the optimal solution
to the VRP is the one such that maxflðTglobal

iÞg is minimized. The
computation of solving the VRP is distributed among robots, where
the lowest-cost solution is shared among all robots and used as the
initial guess to be optimized further by each robot.

Global planning—Multirobot exploration with limited
communication
Our dual-resolution scheme was also adapted to address the limited
communication constraint in multirobot exploration. Here, we
assume that robots can communicate when they are physically
within a distance range. In addition, robots can communicate
over multiple hops, where the information is relayed by other
robots in between.
The conventional rendezvous-based strategies
During a rendezvous, robots meet each other at a fixed time cadence
and at a predefined location that all robots agreed upon previously.
The rendezvous behavior is realized at the global level of our
method. With a synchronized knowledge about the exploring sub-
spaces Ĝ, robots agree upon the next rendezvous location and time.
In particular, the centroid of an exploring global subspace grdv [ Ĝ

is designated as the rendezvous location. grdv is selected as the one
with the least farthest-neighbor distance, given by

grdv ¼ argminGh[ĜmaxGl[ĜdðGh;GlÞ; h; l [ Zþ; h= l ð4Þ

where dðGh;GlÞ gives the length of the shortest path between two
global subspaces. By doing so, robots can take similar traveling time
to the rendezvous location from other exploring subspaces. The
next rendezvous time is set dynamically on the basis of the traveling
time from the current rendezvous location to the farthest exploring
subspace in Ĝ. For timely arrival at grdv, we solved a VRPwith a time
window constraint (46) associated with grdv for global paths. Fur-
thermore, each robot estimates the traveling time to grdv to deter-
mine when to stop exploring and start going to grdv.

We also implemented a multipoint rendezvous strategy, where
robots gather at different locations to shorten the traveling distance.
In such a strategy, each robot continues to travel to grdv until it is
connected with other robots, where one of them is already at grdv.
In this manner, robots that arrive at grdv earlier form a growing
communication network, where the ones arriving later only need
to reach the boundary of the network to communicate.
The proposed pursuit strategy
In our pursuit strategy, robots opportunistically go after each other
to communicate to improve the overall exploration time efficiency.
To evaluate whether a communication attempt is beneficial, a robot
reasons about how its own information can affect other robots’ ex-
ploration plans and the cost of delivering such information.

We define a robot’s knowledge of the environment as the set of
explored and exploring global subspaces denoted by ~G. Each robot
keeps track of its own knowledge and the knowledge of other robots.
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To represent what robot i believes about robot j’s knowledge of the
environment, we use the notation ~G

j
i, where i and j are integers

between 1 and N. The notation ~G
i
i represents robot i’s own knowl-

edge. Before the exploration, ~G
j
i is initialized with the prior knowl-

edge that robot i has about robot j, for instance, a single global
subspace that contains robot j’s starting position. When two
robots, i and j, can communicate with each other, they synchronize
their knowledge with the updated knowledge denoted by super-
script †. The synchronization is represented by the equation

~G
iy
i ¼

~G
jy
j ¼

~G
jy
i ¼

~G
iy
j  

~G
i
i �

~G
j
j ð5Þ

Furthermore, they update their understanding of other robots’
knowledge such that

~G
ky
i ¼

~G
ky
j  

~G
k
i �

~G
k
j ð6Þ

where k is an integer between 1 and N, and k is not equal to i and j.
In this context, ⊕ refers to the combination of two robots’ knowl-
edge, and the explored status has precedence over the exploring
status when updating the status of a global subspace.

In the scenario where robot i and robot j are out of the commu-
nication range, robot i must decide whether to pursue robot j to
communicate by evaluating two options, no communication and
assumed communication. Let Ĝnew denote the global subspaces
that are currently only known to robot i, such that Ĝnew å ~G

j
i. In

the scenario of no communication, robot i plans the global path
fTglobal

1; . . .;Tglobal
Ng with the cost

c ¼ maxflðTglobal
1Þ; . . .; lðTglobal

NÞg ð7Þ

whereTglobal
j does not visit ~̂Gnew because robot i believes that robot

j is not aware of it. In the scenario of assumed communication, as-
suming robot j knows about Ĝnew, such that

~G
jy
i  

~G
j
i � Ĝnew ð8Þ

robot i can plan the global paths as fTy

global
1
; . . .;T

y

global
N
gwith the

cost

cy ¼ maxflðTy

global
1
Þ; . . .; lðTy

global
N
Þg ð9Þ

where T
y

global
j
may visit exploring subspaces in Ĝnew. If c† is less

than c, it is beneficial for robot i to communicate with robot j so
that robot j can share the workload of visiting Ĝnew. However,
this requires robot i to deviate from its current exploration path,
thereby incurring additional cost. In the following, we examine
the cost incurred by robot i while pursuing robot j and evaluate
the situations where the incurred cost can be justified by the poten-
tial benefits.

We proceed to estimate the cost incurred by robot i in pursuing
robot j to share the information about Ĝnew. Assuming that robot j
follows the global path Tglobal

j to explore the subspaces in ĜTglobal
j ,

robot i can adopt a pursuit strategy whereby it visits the same sub-
spaces to locate robot j. By estimating the arrival time of robot j at
each subspace, robot i can plan a path that maximizes the likelihood
of encountering robot j with minimal travel time. This can be

approximated by solving a TSP problem subject to time window
constraints (57), which computes the global path for robot i to
visit ĜTglobal

j from its current position and eventually returns to
the same position. We denote the path taken by robot i in pursuing
robot j asTcomms

i. The overall cost taking into account this pursuit
is given by

cycomms ¼ maxflðTy

global
1
Þ; . . .; lðTy

global
i
Þ

þ lðTcomms
iÞ; . . .; lðTy

global
N
Þg ð10Þ

assuming successful exchange of information between the two
robots. If cycomms is less than the current cost c, robot i should inter-
rupt its exploration and pursue robot j by following Tcomms

i. Oth-
erwise, it should continue exploring. After completing the
exploration of known areas, a robot should pursue other robots to
acquire additional information about the environment or to relay
information about previously explored spaces. The process for de-
termining whether to pursue a certain robot and where to pursue it
remains the same as described above, with the primary objective of
minimizing the overall exploration time. However, in this scenario,
the focus of information exchange shifts toward the potential dis-
covery of new areas to explore or avoiding redundant visits to
already explored spaces rather than sharing the workload of explor-
ing a large space as in typical cases. An illustration of the strategy is
presented in fig. S2 (D and E).

In general, when there are M(M ∈ ℤ+, M < N) robots that are
within communication range of a total of N robots, we use a
random sampling method to select communication targets itera-
tively from the remaining N – M robots. In particular, there are
2(N – M ) possible combinations of the target robots to communicate.
We distributed the selection of target robots over the planning
cycles, where only a smaller number of combinations are selected
without replacement from the total 2(N – M ) combinations at each
planning cycle. Empirically, we found that targeting a smaller
number of robots (one or two) is sufficient for improving the non-
communicative strategy. Therefore, we biased the selection to pri-
oritize fewer targets, where the likelihood of selecting combinations
with fewer targets is higher than those with more targets. To deter-
mine the routes for the M robots to pursue the selected target
robots, we solved a VRP with time window constraints (46).
Similar to the scheme discussed earlier, the VRP solution for pur-
suing is jointly optimized and shared among all M robots. If the
pursuit attempt fails, we use a rendezvous-like strategy as a fallback,
where bots return to a predetermined location to meet each other,
which is set in the same way as choosing grdv for the rendezvous-
based strategy. Essentially, the pursuit strategy degenerates to the
rendezvous-based strategy in the worst case. However, such cases
are rare because of the symmetry in the robots’ reasoning. A
target robot that has found sufficient new information will also
try to pursue, which tends to meet the pursuing robots midway.
Otherwise, the target robots will not be far from their original ex-
ploration paths and can be easily found by the pursuing robot. The
procedure for computing the multirobot exploration path with
limited communication is presented in the Supplementary Materi-
als (Algorithm 4).

SC I ENCE ROBOT I C S | R E S EARCH ART I C L E

Cao et al., Sci. Robot. 8, eadf0970 (2023) 19 July 2023 14 of 16

D
ow

nloaded from
 https://w

w
w

.science.org at C
arnegie M

ellon U
niversity on A

ugust 23, 2023



Supplementary Materials
This PDF file includes:
Figs. S1 to S7
Tables S1 to S7
References (58–71)

Other Supplementary Material for this
manuscript includes the following:
Movies S1 to S4
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