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Abstract

The interaction of an autonomous mobile robot with

the real world critically depends on the robots mor-

phology and on its environment. Building a model

of these aspects is extremely complex, making sim-

ulation insu�cient for accurate validation of control

algorithms.

If simulation environments are often very e�cient,

the tools for experimenting with real robots are often

inadequate. The traditional programming languages

and tools seldom provide enought support for real-

time experiments, thus hindering the understanding

of the control algorithms and making the experimen-

tation complex and time-consuming.

A miniature robot is presented: it has a cylindri-

cal shape measuring 55 mm in diameter and 30 mm

in height. Due to its small size, experiments can be

performed quickly and cost-e�ectively in a small work-

ing area. Small peripherals can be designed and con-

nected to the basic module and can take advantage

of a versatile communication scheme. A serial-link is

provided to run control algorithms on a workstation

during debugging, thereby giving the user the oppor-

tunity of employing all available graphical tools. Once

debugged, the algorithm can be downloaded to the

robot and run on its own processor.

Experimentation with groups of robots is hardly

possible with commercially available hardware. The

size and the price of the described robot open the

way to cost-e�ective investigations into collective be-

haviour. This aspect of research drives the design of

the robot described in this paper. Experiments with

some twenty units are planned for the near future.

1. Introduction

Today the mobile robotics �eld receives great atten-

tion. There is a wide range of industrial applications

of autonomous mobile robots, including robots for au-

tomatic oor cleaning in buildings and factories, for

mobile surveillance systems, for transporting parts in

factories without the need for �xed installations, and

for fruit collection and harvesting. These mobile robot

applications are beyond the reach of current technol-

ogy and show the inadequacy of traditional design

methodologies. Several new control approaches have

been attempted to improve robot interaction with the

real world aimed at the autonomous achievement of

tasks. An example is the subsumption architecture

proposed by Brooks [1] which supports parallel pro-

cessing and is modular as well as robust. This ap-

proach is one of the �rst solutions systematically im-

plemented on real robots with success. Other re-

searchers propose new computational approaches like

fuzzy logic [2] or arti�cial neural networks [3].

The interest in mobile robots is not only directed to-

ward industrial applications. Several biologists, psy-

chologist and ethologists are interested in using mo-

bile robots to validate control structures observed in

the biological world. Franceschini [4] uses a robot to

validate the structure of the retina observed on a y,

Beer [5] to replicate the mechanism that coordinates

leg movements in walking insects, Deneubourg [6] to

get a better understanding of collective behaviour in

ant colonies.

All these research activities are based on mobile

robot experimentation. A simpler way to validate con-

trol algorithms is to use simulations, but the simpli-

�cations involved are too important for the results to
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be conclusive. The control algorithm embedded in the

robot must consider its morphology and the proper-

ties of the environment in which it operates [7]. Real

world features and anomalies are complex and di�-

cult to modelise, implying that the experimentation

of control algorithms through simulation can only be

used in preliminary study but cannot prove the suc-

cess of the control algorithm in the real world. The

sole way to validate an algorithm to deal with these

problems is to test it on a real robot [8].

Many robots have been designed to perform experi-

ments on control algorithms but only a few make cost-

e�cient experiments possible. Brooks has designed

several robots with e�ective electronics and mechan-

ics [9]. The control algorithms are programmed in

the subsumption behavioural language, taking into ac-

count software modularity, and real-time and parallel

processing. Unfortunately, during experiments, only a

few tools are available to improve the understanding

of the control process. Moreover, the custom program-

ming language makes code portability and algorithm

di�usion di�cult. Steels [10] uses a video-camera to

record robot actions during experiments but all the

data concerning the robot control process are available

only at the end of the experiment. Other platforms,

such as the Nomad robot [11], make real-time inter-

action possible via a radio link, and have standard

programming languages, but the size of the robot and

the environment it requires make experimentation un-

comfortable.

The lack of a good experimentation mobile robot

for single-robot experiments, means that it is im-

possible today to perform collective-behaviour exper-

iments. The programming environment and the real-

time visualisation tools are totally insu�cient for this

purpose.

The development of the miniature mobile robot

Khepera addresses the problems mentioned above. Its

hardware is designed so that it is small enough for the

operation of several at the same time and in small ar-

eas, for example on a desk-top. Modularity allows new

sensors and actuators to be easily designed and added

to the basic structure. A versatile software structure

is provided to help the user to debug the algorithms

and to visualise the results.

2. Hardware

Miniaturisation is an important challenge for indus-

try: CD players, computers, video cameras, watches

and other consumer products need to implementmany

functionalities in a small volume. In the robotics �eld

many applications need small actuators, small teleop-

erated machines or tiny autonomous robots. Dario

[12] gives a comprehensive description of the research

�eld and of the available technology. In the Khep-

era design, miniaturisation is the key factor in making

cost-e�ective experimentations possible both for single

or multiple robot con�gurations.

2.1. Generalities

The robot presented in this paper is only a �rst step

in the direction of miniaturisation. Dario de�ne this

category of robots as miniature robots. They mea-

sure no more than a few cubic centimetres, generate

forces comparable to those applied by human opera-

tors and incorporate conventional miniature compo-

nents. The next miniaturisation step needs special

fabrication technologies, today in development. Khep-

era uses electronic technology available today: the new

family of 683xx microcontrollers fromMotorola makes

the design of complete 32 bit machines extremely com-

pact. Surface mounted devices (SMD) allow an impor-

tant increase in component density on printed circuit

boards. New compact sensors, including some signal

preprocessing on the sensing chip, reduce the need

of additional circuitry. Only the mechanical parts

(wheels, gears, manipulator) are built expressly for

Khepera, as well as the magnetic sensors for count-

ing the wheel revolutions.

The design of such miniaturised robots demands

a great e�ort spanning several �elds. The result is

a complex compromise between functionalities to be

implemented, available volume, current technology,

power requirements, etc.

Khepera is composed of two main boards (�gure 2).

pince.eps

81 � 72 mm

Figure 1. The Khepera robot.
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Figure 2. Khepera hardware architecture.
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Figure 3. Khepera communication network topology.

Application-speci�c extension turrets for vision, for

inter-robot communications, or which are equipped

with manipulators can be directly controlled via the

Khepera extension busses. Khepera can be powered

by an external supply when connected for a long time

to a visualisation software tool; however, on-board ac-

cumulators provide Khepera with thirty minutes of

autonomous power supply.

2.2. Distributed processing

One of the most interesting features of Khepera is the

possibility of connecting extensions on two di�erent

busses. One parallel bus is available to connect sim-

ple experimentation turrets. An alternative and more

sophisticated interface scheme implements a small lo-

cal communication network; this allows the connec-

tion of intelligent turrets (equipped with a local micro-

controller) and the migration of conventional or neu-

ral pre-processing software layers closer to the sensors

and actuators. This communication network (�gure 3)

uses a star topology; the main microcontroller of the

robot acts as a master (at the centre of the star). All

the intelligent turrets are considered as slaves (on the

periphery of the star) and use the communication net-

work only when requested by the master.

This topology makes it possible to implement dis-

tributed biological controls, such as arm movement

coordination or feature extraction and pre-processing

in the vision, as observed in a large number of insects.

The multi-microcontroller approach allows the main
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microcontroller of Khepera to execute only high level

algorithms; therefore attaining a simpler programming

paradigm.

2.3. Basic con�guration

The new generation of Motorola microcontrollers and

in particular the MC68331 makes it possible to build

very powerful systems suitable for miniature neural

control. Khepera takes advantage of all the micro-

controller features to manage its vital functionality.

The basic con�guration of Khepera is composed of the

CPU and of the sensory/motor boards.

The CPU board is a complete 32 bit machine in-

cluding a 16 MHz microcontroller, system and user

memory, analogue inputs, extension busses and a se-

rial link allowing a connection to di�erent host ma-

chines (terminals, visualisation software tools, etc.).

The microcontroller includes all the features needed

for easy interfacing with memories, with I/O ports

and with external interruptions. Moreover, the large

number of timers and their ability to work in associ-

ation with the I/O ports indicate that this device is

the most important component in the design.

The sensory/motor board includes two DC mo-

tors coupled with incremental sensors, eight analogue

infra-red (IR) proximity sensors and on-board power

supply. Each motor is powered by a 20 kHz pulse

width modulation (PWM) signal coming from a ded-

icated unit of the microcontroller. These signals are

boosted by complete four-quadrant NMOS H bridges.

Incremental sensors are realised with magnetic sen-

sors and provide quadrature signals with a resolution

of 600 impulsions per wheel revolution. IR sensors

are composed of an emitter and of an independent

receiver. The dedicated electronic interface is built

with multiplexers, sample/hold's and operational am-

pli�ers. This allows the measurement of the absolute

ambient light and the estimation, by reection, of the

relative position of an object from the robot.

2.4. Additional turrets

To make experiments involving environment recog-

nition, object detection, object capture and object

recognition possible, two intelligent turrets have been

designed and built: one for stereoscopic vision, the

other containing a manipulator.

The stereoscopic vision turret employs two 64 pixel

linear photoelement arrays and a dedicated optical el-

ement. The analogue value of each pixel is coded on

16 grey levels. To obtain useable data under a wide

spectrum of enlightenment conditions, an additional

sensor is used to perform as an automatic iris: the in-

tegration time necessary for the photoelement arrays

piggy-back.eps
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Figure 4. Khepera physical structure: Basic sen-

sory/motor, CPU and vision boards.

is controlled by intensity of the ambient light. Mon-

dada et al. [8] proved the validity of this stereoscopic

vision in robot navigation (spatial frequency �ltering

was used in obstacle detection and avoidance).

The manipulator turret makes Khepera capable of

an interaction with objects of its environment. Two

DC motors control the movements of the manipulator

(elevation and gripping). Di�erent classes of objects

can be detected by the gripper sensors which measure

sizes and resistivities.

Robots displaying collective behaviour need means

to perform inter-robot communications and localisa-

tion. Turrets providing Khepera with these function-

alities are under study at the time of writing.
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3. Software

Managing all the Khepera resources is a complex task.

The large number of asynchronous events to control,

and the necessity to share some critical interfaces led

to the development of a complete low-level software

organised as a collection of basic I/O primitives [13].

3.1. Hierarchical software structure

The multi-microcontroller approach and the complex

tasks to manage required a hierarchical approach to

the software structure. The concept chosen applies

when intelligent turrets (equipped with a microcon-

troller) are used. Two software structures are imple-

mented: a single high-level application program and

a number of stand-alone local processes (�gure 5).

Stand-alone local processes (e.g., for IR sensor se-

quencing, motion control, wheel incremental-sensor

counting, etc.) are executed cyclically according to

their own event timer and possibly in association

with external interruptions. The high-level applica-

tion software run the control algorithm and commu-

nicate with the stand-alone local processes via a mail-

box mechanism. This decoupling of low- and high-

level tasks makes the development of complex appli-

cations quick and easy.

3.2. Control of Khepera

Experiments with Khepera are performed in two dif-

ferent ways: by running algorithms on autonomous

robots or in connection with visualisation software

tools.

As already mentioned, the details of the basic in-

put/output activities are managed through a library

of stand-alone processes. During the development,

the standard RS232 link is used, through a generic

high level protocol, to communicate with these pro-

cesses from a workstation. The application software

is therefore run on the workstation and calls to the

basic primitives make it possible to monitor the robot

activity possible. All standard and specialised visual-

isation tools can be employed to simplify the control

algorithm debugging.

Because the application software is written in stan-

dard C language, debugged algorithms can easily be

converted to run on the Khepera CPU. Applications

can be downloaded to Khepera and the robot becomes

autonomous from the development environment.

4. Experimentation environment

The quality of the measurements obtained in robot

experiments and the e�ciency of the whole experi-

mentation process critically depends on the structure

of the working environment. Tools currently available

for simulation are far better developed than those used

for experimenting with real robots. The real time in-

teraction with the control process and the continuous

visualisation of the parameters make possible a faster

and better understanding of the mechanisms involved.

For these reasons, it is necessary to develop better vi-

sualisation and interactive software tools adapted to

the experimentation tasks.

The simplest way to implement a comprehensive

graphical interface is to use a scienti�c workstation.

This must be connected to the robot to collect the

data for display and to communicate the orders com-

ing from the user. The physical arrangement of all ele-

ments involved in the experiment must be compact, al-

lowing a complete and comfortable control. Thanks to

miniaturisation, this can be obtained as illustrated in

�gure 6: the entire con�guration, including robot, en-
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Figure 6. Khepera experimentation environment.

vironment and workstation, is conveniently arranged

on a normal table. In the arrangement shown in �g-

ure 6 the serial link cable does not disturb the move-

ment of the robot. A device to prevent the cable from

rolling up is placed at mid-length on the serial cable.

For experiments involving more than one robot, the

wired serial link can no longer be used. Special radio

communication modules are being developed for this

purpose. This additional module will provide means

to control several Khepera at the same time.

With a wired or a radio serial link, the data ow be-

tween workstation and robot must be as little as pos-

sible. To minimise this ow without restricting user

ability, the control algorithm runs on the workstation

and communicates to the robot only the data concern-

ing sensors and motors. This con�guration is optimal

when an important number of parameters must be dis-

played and controlled.

Several programming and visualisation tools are

used to perform experiments with Khepera. Here,

three programming styles will be presented: the �rst

uses a classical programming language to build stand-

alone applications, the second a complete graphical

programming interface and the third is a compromise

between the previous two, making the best of both.

4.1. Complete applications

A �rst programming possibility is to code the con-

trol algorithm and the user interface in a traditional

way. This is a good choice for software engineers or re-

searchers who have already developed a visualisation

and control interface, for instance in a simulation en-

vironment. It is often the case that, when a researcher

starts to perform real robot experiments, a simulator

has already been developed and used for preliminary

studies. In this situations, the simulator can easily be

adapted by replacing the simulated actions with calls

to the interface with the real robot. This can usually

be made without modifying the user interface.

Some very interesting results have been achieved

with this approach on the neural networks simulator

developed by Ph. Gaussier [14]. The simulator is used

as a tool to design neural networks for robot control.

A real time visualisation interface permits a veri�able

step-by-step learning process on the robot.

A similar experience in interfacing Khepera with a

simulator is in progress using the simulator BugWorld,

developed at the Institute f�ur Informatik of the Uni-

versity of Z�urich. In this case, the control interface will

be complemented with a measurement system which

enables the user to plot the trajectory of the robot in

real time on the host screen.

4.2. LabVIEW

The software package LabVIEW is a commercial prod-

uct fromNational Instruments [15] and runs on several

host machines (PC, Macintosh or Sun workstations).

LabVIEW has been developed as an environment for

the design of virtual instruments (VI). Every VI com-

prises a control panel and an interconnection diagram.

On the panel, the user can interactively specify graph-

ical devices for input (e.g., sliding cursors, buttons,

text controls) and for output (e.g., gauges, images,

graphs). In the diagram, the user graphically enters

the functionality of the VI. A library of standard func-

tionalities is available to perform this task: icons per-

forming numerical functions, string treatment, matrix

computations, etc. can be linked together to design an

algorithm. An icon can be associated with a complete

VI and used hierarchically in the diagram of another

instrument, thus allowing a modular approach. More-

over, modules can be written in standard program-

ming languages, such as C or Pascal.

An sample experiment is shown in �gure 7. The

diagram represents the computation of a subsumption-

based algorithm [1]. Two modules, collide and turn

wall, take inputs from the sensors (bottom left icon)

and are connected to feed appropriate commands to

the motors (right icon). The sensors and motor icons

communicate with the robot through the wired serial

link. The two graphs on the panel visualise the state of

one motor and of one sensor. The modules in the top

right part of the diagram evaluate the period required

to recompute the algorithm; this is displayed at the

bottom left of the panel.

LabVIEW is an optimal tool for the design of ex-

perimentation environments without the use of pro-

gramming languages. The complete graphical inter-
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Figure 7. LabVIEW display.

face helps specifying the interaction items of the panel

but becomes ine�cient when designing complex con-

trol algorithms. In this case, it is more e�cient to de-

sign modules using standard programming languages.

The only disadvantage of LabVIEW version 2 is that

the display possibilities are somehow limited. The ver-

sion 3 will provide more interactive capabilities and

will be a better design tool for mobile robot experi-

mentation.

4.3. Grapher

Grapher [16] is an experimentation tool developed

at LAMI by Y. Cheneval and L. Tettoni for the Es-

prit Elena Project. Due to code optimisation and to

improve performance, the software package is avail-

able only on SUN SparcStations. In the Grapher en-

vironment, an experiment is de�ned interconnecting

modules that perform sub-tasks such as pure compu-

tation, visualisation or control. The programming of

these modules is done in C language. The intercon-

nections are graphically speci�ed by the user. The

wiring diagram is on a single level, therefore prevent-

ing a hierarchical approach. For this reason, and to

avoid over-complicated wiring schemes, the modules

perform quite complex tasks. To facilitate the de-

velopment, a large number of standard modules are

available, making the best of the available hardware

possibilities; the performance and exibility of the vi-

sualisation is particularly impressive. Comparing Gra-

pher to LabVIEW, the former is less intuitive, needs

some programming knowledge but make complex ex-

perimentation e�cient. The experiment described in

the next section illustrates this aspect.

5. Experimentation in Distributed

Adaptive Control

As an example of the development techniques out-

lined above, the environment to evaluate a control ar-

chitecture will be presented in this section. The con-

trol mechanism is developed according to the design

methodology of distributed adaptive control [17]. This

approach is in turn derived from a distributed self-

organising model of the behavioural phenomenon of

classical conditioning [18] [19]. The example involves

an autonomous agent that can learn to avoid obstacles

using collision and proximity sensors.

The control structure consists of a neural net with

three groups of neurons (�gure 9) named Uncondi-

tioned Stimulus (US), Conditioned Stimulus (CS) and

Motor actions (M). Neurons of the US group are di-

rectly connected with collision sensors, simulated here

by the saturation of the proximity sensors. A prewired

connection between the US and the M groups imple-

ments the robot basic reex of avoiding obstacles at

the time of a collision. Neurons of the CS group obtain

their inputs from the proximity sensors. The learning
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Figure 8. Grapher display.

is performed with an Hebbian rule on the connections

between CS and US. The weights Ki;j of these con-

nections are updated according to:

�Ki;j =
1

N
(� � sisj � � � s �Ki;j) (1)

where N de�nes the number of units in the CS, � is

the learning rate, � the decay rate, and s the average

activation in the group US.

This way, the robot can develop a conditional re-

sponse, learning to avoid obstacles using the proxim-

ity sensors without producing collisions. During the

experimentation it is interesting to observe the evolu-

tion of the learning process on the matrix K, which

depends on � and �.

The software environment used for this experiment

is Grapher (see section 4.3). Figure 8 shows the ex-

periment display on a SUN SparcStation. The princi-

pal window, on the top left, illustrates the functional

diagram of the experiment: The dac module (centre

top) performs the computation of the algorithm and

interacts with the module khepera (centre bottom) to

control the robot. Three other modules permit user

interface. The panel module (top right) allows the

user to control �, � and the algorithm computation

period by means of sliding cursors. The xview module

displays the K matrix in the centre bottom window.

Finally, the cgraph module (bottom right) displays the

sensor state and the trajectory of the robot, as visible

in the rightmost window.

If the control algorithm C source with no display ca-

pabilities is available, the experimental set-up can be

designed in less than one day. The user gains com-

plete control of the physical robot, the development

environment and all the parameters of the algorithm

in real time, thus obtaining an optimal visualisation

of the process.

6. Conclusions

The miniaturisation of Khepera makes a compact and

e�cient experimentation environment possible. As-

sociated with e�ective software tools, this robot is an
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optimal platform to test control algorithms. The mod-

ularity at the hardware, software and control tools lev-

els gives to the user the necessary exibility to perform

accurate experiments quickly. An example of exper-

imentation environment has been presented. The re-

duced size and cost of the miniature robots described

make possible experimentation on collective behaviour

among groups of robots. This will be the main re-

search activity in the near future.
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