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Abstract— Robotic solutions for pipeline inspection promise
enhancement of human labor by automating data acquisition
for pipe condition assessments, which are vital for the early
detection of pipe anomalies and the prevention of hazardous
leakages and explosions. Through simultaneous localization and
mapping (SLAM), colorized 3D reconstructions of the pipe’s in-
ner surface can be generated, providing a more comprehensive
digital record of the pipes compared to conventional vision-
only inspection. Designed for generic environments, most SLAM
methods suffer limited accuracy and substantial accumulative
drift in confined and featureless spaces such as pipelines, due
to a lack of suitable sensor hardware and state estimation
techniques. In this research, we present VILL-SLAM: a dense
RGB-D SLAM algorithm that combines a monocular camera
(V), an inertial sensor (I), a ring-shaped laser profiler (L),
and a Lidar (L) into a compact sensor package optimized
for in-pipe operations. By fusing complementary visual and
depth information from the color camera, laser profiling, and
Lidar measurement, our method overcomes the challenges of
metric scale mapping in conventional SLAM methods, despite
its monocular configuration. To further improve localization
accuracy, we utilize the pipe geometry to formulate two unique
optimization factors that effectively constrain odometer drift.
To validate our method, we conducted real-world experiments
in physical pipes, comparing the performance of our approach
against other state-of-the-art algorithms. The proposed SLAM
framework achieved 6.6 times drift improvement with 0.84%
mean odometry drift over 22 meters and a mean pointwise
3D scanning error of 0.88mm in 12-inch diameter pipes. This
research represents a significant advancement in miniature in-
pipe inspection, localization, and mapping sensing techniques.
It has the potential to become a core enabling technology for
the next generation of highly capable in-pipe robots, capable
of reconstructing photo-realistic 3D pipe scans and providing
disruptive pipe locating and georeferencing capabilities.

I. INTRODUCTION

Pipelines, crucial infrastructures supporting human civi-
lization, may experience degradation from various factors
like corrosion, geological subsidence, and improper plumb-
ing or digging, leading to economic losses and hazardous
incidents. The inspection and maintenance of pipelines are
of paramount importance. For inspecting the inner surface
of the pipes, one of the most well-adopted techniques is to
use closed-circuit television (CCTV) cameras for basic visual
inspection, and oftentimes it relies on human operators for
time-consuming data collection and video analysis [1]. Due
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Fig. 1. The in-pipe mapping sensor hardware prototype using the proposed
VILL-SLAM method to fuse multiple sensory information, which produces
a photo-realistic dense RGB-D reconstruction of a 12-inch pipe segment.

to the monomodal nature of 2D images, such methods may
fall short of the objectives to detect and localize anomalies.

To acquire a more comprehensive digital record of the
pipe interior, multi-sensor fusion SLAM techniques from
the robotics community can be used to automatically collect
sensory data and perform RGB-D reconstructions in pipes,
providing a combination of visual, 3D, and georeferencing
information for more sophisticated pipe condition monitoring
and assessment. Compared to single-sensor odometry and
mapping methods such as [2]–[4], fusing data from multiple
sensor modalities increases the reliability of state estimation
and helps reduce ambiguity during the estimation. Popular
methods like [5] [6] make use of an inertial measurement
unit (IMU) alongside visual or Lidar odometry. [7], [8]
incorporate visual, inertial, and Lidar information to further
improve the SLAM performance when there is perceptual
degradation or fast motion. These algorithms and the corre-
sponding sensor suites are designed for generic indoor and
outdoor environments.

In confined environments such as pipes, however, the sens-
ing hardware and software employed in most conventional
methods suffer low localization and mapping accuracy. From
a hardware perspective, some methods are entirely unable to
operate inside small pipes due to the limitation of minimal
sensing range and bulky sensors. Algorithmically, the slower
sensor motion in confined spaces can lead to insufficient IMU
excitation and thus an incorrect metric scale or IMU bias
initial estimation. The lack of visual and geometric features
also poses a significant challenge to state estimation. Pipe
environments lack distinct 3D geometric features such as
edges, planes, and corners compared to daily environments,
rendering Lidar odometry methods that heavily rely on these



features inappropriate. Likewise, the scarcity of 2D visual
features in pipes may cause feature tracking failure and
thus lead to inconsistent scale estimation during visual-based
SLAM processes. Methods like [9] and [10] that address this
issue by assuming a fixed measured pipe radius to constrain
the depth of the observed visual features have nonetheless
made an assumption that limits their use to pipes with one
specific diameter only. Alternatively, [11] leverages laser
profiling to actively determine the local depth, and has shown
promising results in improving the accuracy of metric scale
estimation and reducing the localization drift.

Leveraging multi-sensor fusion and laser profiling, we
have previously proposed a method, VLI-SLAM [12], which
integrates single-line structured light [13] and visual-inertial-
based approaches [5], and demonstrated the potential of
applying it in short-range and confined space SLAM appli-
cations. Although tests indicate that this method can create
a highly detailed pipe scan while maintaining relatively
consistent localization tracking in short distances, we do
observe a non-negligible drift over longer pipe segments.

In environments where global positioning information is
unavailable, any SLAM algorithm that only relies on spa-
tially or temporally local measurements is likely to expe-
rience amplified odometry drift over the long run due to
the accumulation of uncorrected dead-reckoning errors. To
mitigate this issue, researchers have looked into methods that
use the pipe’s cylindrical shapes to correct the odometry drift.
For example, [14] incorporates a cylindrical constraint into
ORB-SLAM2 [2] for long-term drift reduction. However, this
work assumes that the pipe is perfectly straight, which is
an oversimplified assumption. In this research, we aim to
further explore different types of constraints derived from
pipe geometry that adapt to the pipe’s structural characteris-
tics, and construct algorithms to enhance our previous VLI-
SLAM method and optimize it for pipe environments.

Our contributions are summarized as follows:
• A sensor suite design and software framework capable

of mapping in compact pipes with real-time localization
and photorealistic dense RGB-D mapping capability.

• A sliding-window-based SLAM pipeline with a novel
combination of Lidar-based constraints derived from
pipe geometric structure for long-term drift reduction.

II. SYSTEM OVERVIEW

A. Hardware System Overview

Our proposed sensor suite design (Fig. 1b) consists of an
RGB CMOS camera with a fisheye lens, a MEMS-based 6-
axis IMU, a laser projector, and a Realsense L515 Lidar.
The laser projector projects a laser plane orthogonal to the
camera’s optical axis by emitting a thin laser beam towards
a conic mirror, and the laser plane forms a ring on the pipe’s
inner surface. We utilize the alternating-shutter technique
described in [12] to strobe the red laser stripe and the
illumination LED in synchronization with the image shutter
trigger (Fig. 2). This way, we effectively capture the visual
frames Iv containing visual details and the profiling frames

Ip containing a bright laser ring with minimal time gaps. The
streaming rate of the visual-laser frame pairs is 30Hz. We
perform camera intrinsic calibration with [15], camera-laser
calibration with [13], camera-IMU calibration with [16], and
camera-Lidar calibration using MATLAB’s Lidar Toolbox.
The proposed sensor package is compact and attachable to
existing actuated in-pipe crawler robots.

Fig. 2. We capture visual and profiling image frames using one camera by
quickly switching between visual and profiling frames using a microcon-
troller, measuring RGB and depth information in a near-concurrent fashion.

B. Software System Overview

The software architecture diagram is illustrated in Fig.
3. After acquiring data from each physical sensor, a series
of front-end preprocessing processes formulate data frames
by tracking the visual features, preintegrating IMU measure-
ments [17], triangulating the laser profiler data, and fitting
cylinder primitives using the Lidar point cloud. Then the
software associates the 2D visual features with depths from
the triangulated 3D laser points to bootstrap the SLAM
process. With the preprocessed sensory data from the front-
end, a sliding-window-based nonlinear optimization process
is activated to estimate robot odometry and visual feature
depths, where the constraints in the cost function are struc-
tured with a factor graph. Using the odometry determined
from the state estimator, the 3D laser scans are registered
into a colored point cloud map. We also feed the odometry
back to register a local Lidar map, which provides global
depth information during the visual-depth association.

III. VISUAL-INERTIAL-LASER-LIDAR SLAM

At the core of this method, is a sliding-window-based
nonlinear optimization that performs state estimation using
visual, inertial, and laser-and-lidar-induced depth measure-
ments. It also incorporates both the pipe’s cylindrical struc-
ture and available geometric features to reduce odometry
drift. Finally, the output is a dense RGB-D scan of the pipe
interior and the sensor package’s 6-DoF odometry.

A. Sensor Data Preprocessing

The initial stage comprises the pre-processing of raw
data obtained from the various sensors. Each data stream
is processed independently, and is outlined as follows:

1) Laser detection and triangulation. Given the cali-
brated laser plane parameters with respect to the camera
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Fig. 3. VILL-SLAM software architecture and information flow chart.

frame, we detect and triangulate the laser points through
HSV thresholding in the profiling frames to find the cor-
responding 3D laser point for each 2D laser pixel following
the method described in [12]. In practice, the laser can be
robustly extracted even when ambient light is captured in the
profiling frames, for example, near pipe entrances and exits.

2) Visual feature tracking through KLT optical flow [5].
3) IMU preintegration, implemented according to [5].
4) Lidar preprocessing Lidar point clouds streaming at

10Hz are cropped to a region of interest between 0.4m and
6m from the sensor, spatially downsampled by a factor of 20,
and transformed to the body frame, where the body frame
is aligned to the IMU frame. If the remaining points are
sufficient, we then attempt to fit a cylinder to the pipe point
cloud using RANSAC-based cylinder fitting [18], regardless
of whether the captured point cloud is actually cylindrical or
not. The output of Lidar preprocessing is a Lidar data frame,
which contains the preprocessed Lidar point cloud L, the set
of points-on-cylinder Y ⊆ L, and the corresponding cylinder
parameters if the cylinder is found, including the normalized
axis vector u, an axis point p, and the radius r.

B. Visual-Depth Association

After the preprocessing step, the visual features are asso-
ciated with the corresponding depth data from laser profiling
and Lidar. Denote the set of visual features as F . A feature
is defined to be a feature-on-laser if any of its observations
is close to the laser pixels in adjacent Ip. Denote the set
of features-on-laser as Fl. Similarly, a feature f /∈ Fl is a
feature-on-Lidar if any of its observations is close to a point
in the local Lidar map projected to Iv , and the set of features-
on-Lidar is denoted as FL. For a feature fi ∈ Fl ∪ FL, the
observation frame in which the feature pixel is the closest to
the laser pixel or the projected Lidar pixel is defined as its
primary observation frame c∗i . If fi /∈ Fl ∪FL , its c∗i is the
first observation frame. Note that if a feature fi ∈ Fl ∪ FL,
there exists a depth association between the 2D feature and
3D data. Denote its associated depth at c∗i as d̄i.

C. Estimator Initialization

To bootstrap the SLAM process, a vision-only structure
from motion (SfM) is performed to obtain the up-to-scale
camera poses and feature positions, followed by visual-
inertial alignment, which aligns metric IMU pre- integration
with the SfM results [5]. This way, we can obtain a rough
gyroscope bias estimation b̂g and a scale estimation ŝ. The
gyroscope bias is prone to error due to insufficient rotational
excitation, and the scale estimation can be a few orders of
magnitude larger than the true scale in an in-pipe scenario.
A fine-tuned scale estimation, s̄, is computed by multiplying
the rough scale by a factor determined by the associated
depth d̄i of each visual feature fi ∈ Fl∪FL (1). | · | denotes
the cardinality of a set, d̂i is the estimated depth of each
feature from triangulation. α balances the contribution of
laser and Lidar depths to the scale correction and it is set to
|FL|/(|Fl|+ |FL|) if |FL| > 0 or 1 otherwise.

s̄ = α
1

|Fl|
∑
fi∈Fl

d̄i

d̂i
ŝ+ (1− α)

1

|FL|
∑

fi∈FL

d̄i

d̂i
ŝ (1)

Using the new scale, we correct each keyframe’s posi-
tion, velocity, and feature positions estimated during visual-
inertial alignment and conclude the initialization process.
Note that we do not fine-tune the gyroscope bias estimation
here since it will be further corrected online during the
sliding-window-based optimization.

D. Sliding-Window-Based Factor Graph Optimization

After estimator initialization, we proceed with a sliding
window-based tightly-coupled monocular VIO. The full state
vector, consisting of robot states x and landmark states λ in
the sliding window, is defined in (2):

X = [x0,x1, ...,xn, λ0, λ1, ..., λm]

xk = [Tw
bk
,vw

bk
,ba,bg],

(2)

where n, m are the total number of keyframes and visual
features in the sliding window, respectively. λi is the inverse



feature depth of fi in its primary observation frame c∗i . ba

and bg are the accelerometer and gyro biases [5], Tw
bk

is the
pose of the kth body frame with respect to the world frame.

We perform maximum a posteriori estimation of the states
X by minimizing the weighted sum of four factors in a
factor graph, alongside the pose prior obtained from the last
marginalization [5], as shown in Fig. 4.

Fig. 4. At the core of our method, a factor graph is used to represent
various states with their related constraints within a sliding window.

Visual Reprojection Factor measures the re-projection
error of visual features between keyframes. For every feature
fi, we project its estimated 3D coordinates to keyframe cj
in the window and compute the 2D pixel difference with the
observation in its primary observation frame c∗i (3). πc(·)
projects a 3D point onto the 2D image and π−1

c (·) back-
projects a pixel onto the normalized image plane.

ec =
∑
i∈F

∑
j∈Y

∣∣∣∣∣
∣∣∣∣∣πc(T

cj
wTw

c∗i

1

λi
π−1
c (

[
u
c∗i
i

v
c∗i
i

]
))−

[
u
cj
i

v
cj
i

]∣∣∣∣∣
∣∣∣∣∣
2

(3)

Visual-Depth Association Factor leverages the depth
association between visual features and laser or Lidar in-
formation to further constrain feature depth estimation. For
a feature fi ∈ Fl ∪ FL, we compute the residual between
the associated depth d̄i from projective data association and
the estimated feature depth, according to (4):

ed =
∑
fi∈F

|| 1
λi

− d̄i||2 (4)

IMU Odometry Factor We follow the IMU residual
definition in [5] to estimate vw

bk
, ba, bg , and Tw

bk
. The IMU

factor is used to assist state estimation when low-feature
regions are encountered [10].

Lidar Factor is used to constrain the odometry estimation
by aligning Lidar frames through Lidar point cloud matching.
This alignment is performed between each Lidar frame Lk

in the current sliding window and a reference Lidar frame
Lref captured prior to the window and updated periodically
with a fixed update period τ ref , and the pose Tbref of the
body frame bref in which Lref was captured is known.

We define two candidate Lidar factors: 1) the Lidar
cylinder factor, inspired by [14], for long and straight pipe
segments and 2) the Lidar iterative-closest-point (ICP) factor

when the sensor package approaching geometrically-diverse
environments such as pipe with dents or protrusions, fittings,
branches, or deformed areas. Depending on the environ-
mental characteristics, the algorithm selects one Lidar factor
from these two candidates. The criterion for the selection is
termed as the cylindrical structure regularity RY , as defined
in (5). The larger RY is, the more Lidar points are points-
on-cylinder and the environment is more cylindrical.

RY =

{
|Y|/|L|, if |L| > 0

0, otherwise
(5)

1) Lidar Cylinder Factor is selected if RY is greater than
a threshold HY for both Lk and Lref , which means that the
environment is almost perfectly cylindrical. The key idea
is that for two sets of points-on-cylinder, if they capture
the same physical cylindrical environment, all points are
equidistant from one single cylinder axis. This cylindrical
constraint is mathematically formulated in (6), where Yk ∈
Lk and Yref ∈ Lref . These points-on-cylinder are assumed
to lie on the same physical cylinder given τ ref , which is
empirically set based on the maximum curvature along the
pipe and the robot’s speed. We empirically set it to 10s.
qi is any point in Yk. ubk , pbk and ubref , pbref are the
cylinder axis vectors and axis points in frame bk and bref ,
respectively (Fig. 5). Although the two degrees of freedom
about the axial direction of the pipe are underconstrained
with this cylinder factor alone, the pose is fully constrained
when jointly optimized with other factors.

eY =

n∑
k=0

∑
qi∈Yk

∣∣∣∣∣∣Tw
bref

ubref ×
(
Tw

bk
qbk
i −Tw

bref
pbref

)∣∣∣∣∣∣
− ||Tw

bref
ubref || · r

(6)

Fig. 5. Lidar cylinder factor.

2) Lidar ICP Factor is selected if RY ∈ (0, HY ] for both
Lk and Lref . First, point-to-point ICP [20] is performed
on Lk and Lref to find the matching point pairs in the
Lidar point clouds. Then, we construct the residual shown
in (7) by transforming the corresponding points into the
world frame and computing the distance between each pair
of correspondences. The ICP can be completed without
ambiguity because the threshold check on the cylindrical
structure regularity ensures that there exist sufficient geo-
metric features to perform the alignment.

eicp =
∑

qi∈Lk∩Lref

∥∥∥Tw
bk
qbk
i −Tw

bref
q
bref
i

∥∥∥2 (7)



Fig. 6. Test environment and mapped point cloud visualization. (a) Test site with a total pipe length of 50m. (b) Mapping results from VINS-Mono [5].
Note that other tested methods including LOAM [3], FAST-LIO2 [6], ORB-SLAM2 [2] and dense mapping pipelines like SSL-SLAM2 [4] and RGBDTAM
[19] all failed to produce reasonable results under same testing conditions. (c) Dense colorized 3D map created by VILL-SLAM (ours) in the pipe test site
and the zoom-in views of some regions of interest. (d) 3D map created by VILL-SLAM in a pipe elbow sample.

E. Map Registration

With the odometry from the optimization, we register two
maps in the world frame: 1) a dense and colored map of
the laser scans and 2) a sparse map of Lidar point clouds.
The laser map is used as the final output of the SLAM and is
generated in a similar fashion as described in [12], where the
color of each laser scan is estimated using adjacent visual
frames. The Lidar map is an intermediate product needed by
the visual-depth association step. To ensure bounded memory
usage, only the Lidar frames captured in the last τ ref are
kept in the Lidar map, and the points are downsampled using
a voxel grid filter [18]. The Lidar map allows the visual-depth
association between a current visual frame and historical
Lidar data, which is desirable in long narrow pipes.

IV. EXPERIMENTS

Experiments are conducted to functionally validate our
method’s dense RGB-D mapping capability and verify that
it is able to perform low-drift localization and accurate
3D reconstruction. First, we visually compare the mapping
quality of our method against the state-of-the-art SLAM
methods. Next, we conduct two experiments to quantitatively
analyze the localization and mapping performance. All our
experiments are performed in 12-inch diameter metal pipes.
No additional lighting besides the LED on the sensor proto-
type and no fiducials are placed in the pipe.

A. Qualitative Analysis

We visually compared the mapping result of our VILL-
SLAM to various state-of-the-art single or multi-sensor
SLAM algorithms, including FAST-LIO2 [6], ORB-SLAM2
[2], LOAM [3], VINS-Mono [5] and dense mapping methods
like SSL-SLAM2 [4] and RGBDTAM [19]. Among the
evaluated methods, all except our methods and VINS-Mono
fail to localize and generate a meaningful map of the pipe.
Although VINS-Mono is able to generate a map of the
pipe, the map is sparse, noisy, and inaccurate due to the
incorrect scale estimation in pipes and the lack of dense
mapping functionality. In contrast, our VILL-SLAM is able

to generate denser and smoother maps (Fig. 6c) thanks to
the accurate metric scale estimation through visual-depth
association with laser and Lidar. Our output map is also
colorized using the alternating-shutter laser profiling method
(Sec. III B). In Fig. 6d, we also include a mapping result of
a 90◦ metal duct, whose inner surface is painted to prevent
reflection. The photo-realistic point cloud maps of the pipe
interior built by VILL-SLAM contain both geometric and
visual details of the pipe, which is valuable for downstream
surface defect or pipe geometry analysis.

B. Localization Accuracy Evaluation

We collect the ground truth trajectory with a Leica total
station (Leica Geosystems AG, Heerbrugg, Switzerland) to
track a prism mounted on the top of the sensor package.
Since the estimated and the true trajectories are not in the
same coordinate frame, we first find the transformation be-
tween the world frame set by the state estimator and the total
station’s frame by aligning the first 10m of the trajectories
using a closed-form method described in [21]. Subsequently,
the two trajectories are transformed into the same coordinate
frame, and the distance between every two matched points is
calculated. We compute the absolute trajectory error (ATE)
over the trajectory length, which is clipped to 22m.

We compare the localization accuracy of VILL-SLAM
against VINS-Mono and VLI-SLAM. Table I shows the
performance statistics across 6 trials, where drift is defined
as the maximum error over trajectory length. The mean
odometry drift of VILL-SLAM is 0.84% and the mean
RMSE is 7.62cm, which is 6.6 times drift improvement
and 2.8 times RMSE improvement compared to VLI-SLAM.
VILL-SLAM also shows a smaller error variance. From this
experiment, we verify that our proposed method is able to
achieve low drift even over long distances in pipes. On
the testing PC with AMD Ryzen 5900x CPU, the average
mapping frame rate is 27fps, which is sufficient for real-time
mapping. An example of the ATE of VLI-SLAM and VILL-
SLAM is shown in Fig. 7. The plot for VINS-Mono is not
included because the error is too large compared to the rest.



TABLE I
MEAN AND STANDARD DEVIATION OF LOCALIZATION ERRORS

Metrics VILL-SLAM
(our current)

VLI-SLAM
(our prior) VINS-Mono

RMSE (cm) 7.62± 4.38 21.67± 10.07 1285.71± 251.94

Max (cm) 18.46± 7.73 121.78± 40.08 4205.16± 452.07
Drift (%) 0.84± 0.35 5.53± 1.82 189.34± 20.55

VLI-SLAM Mapping Result

VILL-SLAM Mapping Result

E
rr

or
 [

cm
]

VILL-SLAM Error (our current)

VLI-SLAM Error (our prior)

Length [m]

a)

b)

Fig. 7. Example ATE plots of VLI-SLAM and VILL-SLAM. (a) Visual-
ization of the ATE of our current work VILL-SLAM (with Lidar) and our
prior method VLI-SLAM (without Lidar) using data collected in one trial.
(b) The corresponding 3D maps of the pipe using the two methods.
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Fig. 8. Workflow of 3D reconstruction accuracy assessment using an
evaluation jig and in-pipe 3D scanning experiments.

C. 3D Reconstruction Evaluation.

As shown in Fig. 8, we first use a high-end 3D printer to
print custom evaluation jigs, whose ground-truth point clouds
are exported from the CAD software. Since the 3D printer
has relatively high printing accuracy, the printing error is
considered negligible. After installing the evaluation jig onto
the pipe’s inner surface, we scan the pipe and the jig using the
sensor prototype. Finally, the point cloud map from SLAM
and the ground-truth point cloud are aligned using ICP, and
the point-to-point L2 distance error is computed. Across 4
trials using 2 jig designs, the average error is 0.88mm per
point, indicating that our scanner can produce maps with
sub-millimeter grade local scanning accuracy.

V. CONCLUSION AND DISCUSSION

In this paper, a confined-space mapping algorithm for
accurate localization and 3D reconstruction (mapping) inside
narrow pipelines is introduced, which tightly couples a
monocular camera, an IMU, a laser profiler, and a Lidar
as the entirety of the basic sensor suite. This framework
includes the fusion of the two redundant yet complementary
depth information gathered from the laser profiler and the
Lidar, which prevents accumulative drift during long-distance
travel inside a featureless and GPS-denied pipe environ-
ment. To further improve the localization accuracy, we also
take advantage of the cylindrical pipe structure and formu-
late two unique optimization factors, Lidar Cylinder Factor
for long straight pipe segments and Lidar ICP Factor for
geometrically-diverse environments, further constraining the
state estimation process. Lastly, the real-world experimental
results prove the proposed VILL-SLAM outperformed con-
ventional state-of-the-art SLAM methods in terms of both
localization accuracy and mapping accuracy during in-pipe
robotic inspection missions.

Experiments indicate that our method is capable of produc-
ing sub-millimeter grade photo-realistic 3D reconstruction
in a real-time fashion, with an average of 0.84% localization
drift and 0.88mm per-point local scanning error, in a 12-inch
diameter pipe over 22-meter mapping distance.

While our method offers many advantages, there are sev-
eral limitations. First, our work has not been fully tested in
pipes with a combination of multiple straight and bendy seg-
ments because our existing in-pipe crawler robot is incapable
of traversing in such complex pipelines. We plan to perform
rigorous testing with an upgraded robot in more diverse
pipeline configurations and further verify the robustness of
our algorithm. Additionally, we observe that the localization
accuracy of our method is sensitive to calibration quality,
especially from camera-laser extrinsic calibration, in which
even small perturbations will result in major mapping errors.
One potential solution for this problem is to implement an
online calibration procedure other than the current one-off
pre-calibration step. Thirdly, the generalizability of the pro-
posed method can be improved by devising other constraints
derived from geometric structures in other pipe environments
with different cross-section shapes, such as rectangular ducts.
Last but not least, it is also interesting to enable loop closure
for pipe networks with loops.

For the next phase of this work, we are actively de-
veloping an articulated and modular compact pipe crawler
robot with higher mobility in narrow pipe environments.
Integrating it with the proposed sensor package and SLAM
software, we aim to deploy them in various pipe types and
damage conditions with our collaborators in the energy and
infrastructure industries and evaluate their performance and
potential market value proposition.
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